浏览全部资源
扫码关注微信
1.中央民族大学生命与环境科学学院,北京 100081
2.山西大学环境与资源学院,山西省黄河实验室,山西 太原 030006
3.北京大学环境科学与工程学院,北京 100871
[ "赵华章,男,北京大学博雅特聘教授,国家杰出青年科学基金获得者,现任山西大学环境与资源学院院长、山西省黄河实验室副主任。主要从事环境化工和废水深度处理研究,针对不同尺度不同场景设计面向可持续发展、旨在提高生态效率的新过程,从微观层面促进物质和能量传递、转化与利用,提高产品生产和污染控制过程中资源能源利用效率。主持国家重点研发计划、国家自然科学基金等项目20余项,在Nature Nanotechnology,Environmental Science & Technology,Water Research等期刊发表论文200余篇,授权国家发明专利30余项。获国家技术发明二等奖1项以及山西省科学技术进步奖一等奖、中国石油和化学工业联合会技术发明一等奖等省部级奖项5项,部分研究成果已实现工业化生产和工程应用。现担任Advanced Membranes,Environmental Science & Ecotechnology,Green Chemical Engineering,《化学通报》编委。Email: zhaohuazhang@pku.edu.cn" ]
纸质出版日期:2023-12-15,
收稿日期:2023-11-01,
修回日期:2023-12-08,
扫 描 看 全 文
刘金炜,何阳,赵华章.吸附式空气取水技术原理和研究进展[J].新兴科学和技术趋势,2023,2(4):346-359.
LIU Jinwei,HE Yang,ZHAO Huazhang.Principle and research progress of sorption-based atmospheric water harvesting[J].Emerging Science and Technology,2023,2(4):346-359.
刘金炜,何阳,赵华章.吸附式空气取水技术原理和研究进展[J].新兴科学和技术趋势,2023,2(4):346-359. DOI: 10.12405/j.issn.2097-1486.2023.04.002.
LIU Jinwei,HE Yang,ZHAO Huazhang.Principle and research progress of sorption-based atmospheric water harvesting[J].Emerging Science and Technology,2023,2(4):346-359. DOI: 10.12405/j.issn.2097-1486.2023.04.002.
吸附式空气取水技术是一种获取水资源的新途径,可解决缺乏常规水资源时的需水问题。吸附式空气取水通常依靠吸附剂捕水,再使其受热释水并将水蒸气冷凝,从而获得清洁的液态水。高性能的水蒸气吸附材料和高效率及低能耗的空气取水系统是提高空气取水过程效能的关键。本综述总结了吸附式空气取水技术的原理和水蒸气吸附剂的捕水机理,综述了近年来常用的四种不同类型水蒸气吸附剂(多孔碳材料、无机聚合物、有机聚合物以及吸湿性盐)的吸附性能和研究进展,归纳了空气取水系统的设计优化思路和方法。最后对吸附式空气取水技术的未来发展进行了展望。
Sorption-based atmospheric water harvesting (SAWH) technology is a new approach to obtain fresh water, which solves the problem of water demand in the absence of conventional water resources. SAWH relies on sorbents to capture water vapor and release water when heated. The released water vapor was finally condensed into liquid water. The key to improve the efficacy of SAWH system lies in the invention of high-performance water sorption materials and the optimization of high efficiency and low energy consumption SAWH systems. This review summarizes the principle of SAWH technology and the water capture mechanism of water vapor sorbents, and reviews the sorption properties and research progress of four types of water vapor sorbents commonly used in recent years (i.e., porous carbon materials, inorganic polymers, organic polymers and hygroscopic salts). The paper also summarizes the design and optimization ideas and methods of SAWH systems. Finally, it mentions the future prospect of the development of SAWH technology.
空气取水吸附吸湿材料
atmospheric water harvestingsorptionmoisture absorbing materials
XU W T, YAGHI O M. Metal-organic frameworks for water harvesting from air, anywhere, anytime[J]. Acs Central Science, 2020, 6(8): 1348-1354. DOI: 10.1021/acscentsci.0c00678http://dx.doi.org/10.1021/acscentsci.0c00678.
ZHUANG S D, QI H S, WANG X Y, et al. Advances in solar-driven hygroscopic water harvesting[J]. Global Challenges, 2021, 5(1): 2000085. DOI: 10.1002/gch2.202000085http://dx.doi.org/10.1002/gch2.202000085.
LAPOTIN A, KIM H, RAO S R, et al. Adsorption-based atmospheric water harvesting: Impact of material and component properties on system-level performance[J]. Accounts of Chemical Research, 2019, 52(6): 1588-1597. DOI: 10.1021/acs.accounts.9b00062http://dx.doi.org/10.1021/acs.accounts.9b00062.
KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air[J]. Advanced Materials, 2018, 30(37): 1704304. DOI: 10.1002/adma.201704304http://dx.doi.org/10.1002/adma.201704304.
QI H S, WEI T Q, ZHAO W, et al. An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption-desorption[J]. Advanced Materials, 2019, 31(43): 1903378. DOI: 10.1002/adma.201903378http://dx.doi.org/10.1002/adma.201903378.
WEI X L, WANG W L, XIAO J, et al. Hierarchically porous aluminosilicates as the water vapor adsorbents for dehumidification[J]. Chemical Engineering Journal, 2013, 228: 1133-1139. DOI: 10.1016/j.cej.2013.05.062http://dx.doi.org/10.1016/j.cej.2013.05.062.
VALENZANO L, CIVALLERI B, CHAVAN S, et al. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory[J]. Chemistry of Materials, 2011, 23(7): 1700-1718. DOI: 10.1021/cm1022882http://dx.doi.org/10.1021/cm1022882.
WIERSUM A D, SOUBEYRAND-LENOIR E, YANG Q Y, et al. An evaluation of UiO-66 for gas-based applications[J]. Chemistry-an Asian Journal, 2011, 6(12): 3270-3280. DOI: 10.1002/asia.201100201http://dx.doi.org/10.1002/asia.201100201.
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. DOI: 10.1021/ja8057953http://dx.doi.org/10.1021/ja8057953.
LI R Y, SHI Y, ALSAEDI M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377. DOI: 10.1021/acs.est.8b02852http://dx.doi.org/10.1021/acs.est.8b02852.
CHRISTY A A. New insights into the surface functionalities and adsorption evolution of water molecules on silica gel surface: A study by second derivative near infrared spectroscopy[J]. Vibrational Spectroscopy, 2010, 54(1): 42-49. DOI: 10.1016/j.vibspec.2010.06.003http://dx.doi.org/10.1016/j.vibspec.2010.06.003.
ZHOU X Y, LU H Y, ZHAO F, et al. Atmospheric water harvesting: A review of material and structural designs[J]. Acs Materials Letters, 2020, 2(7): 671-684. DOI: 10.1021/acsmaterialslett.0c00130http://dx.doi.org/10.1021/acsmaterialslett.0c00130.
WONGKOBLAP A DO D D. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment[J]. Journal of Physical Chemistry B, 2007, 111(50): 13949-13956. DOI: 10.1021/jp0747297http://dx.doi.org/10.1021/jp0747297.
FURUKAWA H, GANDARA F, ZHANG Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. DOI: 10.1021/ja500330ahttp://dx.doi.org/10.1021/ja500330a.
WISSMANN G, SCHAATE A, LILIENTHAL S, et al. Modulated synthesis of Zr-fumarate MOF[J]. Microporous and Mesoporous Materials, 2012, 152: 64-70. DOI: 10.1016/j.micromeso.2011.12.010http://dx.doi.org/10.1016/j.micromeso.2011.12.010.
GE Y X, ZHOU H, JI Y J, et al. Understanding water adsorption and the impact on CO2 capture in chemically stable covalent organic frameworks[J]. Journal of Physical Chemistry C, 2018, 122(48): 27495-27506. DOI: 10.1021/acs.jpcc.8b09033http://dx.doi.org/10.1021/acs.jpcc.8b09033.
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. DOI: 10.1515/pac-2014-1117http://dx.doi.org/10.1515/pac-2014-1117.
DEWEY C S, LEFFORGE P K. Moisture sorption by carbon black[J]. Industrial and Engineering Chemistry, 1932, 24: 1045-1050. DOI: 10.1021/ie50273a019http://dx.doi.org/10.1021/ie50273a019.
MCBAIN J W, PORTER J L, SESSIONS R F. The nature of the sorption of water by charcoal[J]. Journal of the American Chemical Society, 1933, 55: 2294-2304. DOI: 10.1021/ja01333a014http://dx.doi.org/10.1021/ja01333a014.
EMMETT P H. Adsorption and pore-size measurements on charcoals and whetlerites[J]. Chemical Reviews, 1948, 43(1): 69-148. DOI: 10.1021/cr60134a003http://dx.doi.org/10.1021/cr60134a003.
XIAO J, LIU Z L, KIM K, et al. S/O-functionalities on modified carbon materials governing adsorption of water vapor[J]. Journal of Physical Chemistry C, 2013, 117(44): 23057-23065. DOI: 10.1021/jp408716ehttp://dx.doi.org/10.1021/jp408716e.
PICAUD S, COLLIGNON B, HOANG P N M, et al. Adsorption of water molecules on partially oxidized graphite surfaces: a molecular dynamics study of the competition between OH and COOH sites[J]. Physical Chemistry Chemical Physics, 2008, 10(46): 6998-7009. DOI: 10.1039/b811126jhttp://dx.doi.org/10.1039/b811126j.
RABLEN P R, LOCKMAN J W, JORGENSEN W L. Ab initio study of hydrogen-bonded complexes of small organic molecules with water[J]. Journal of Physical Chemistry A, 1998, 102(21): 3782-3797. DOI: 10.1021/jp980708ohttp://dx.doi.org/10.1021/jp980708o.
THOMMES M, MORELL J, CYCHOSZ K A, et al. Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs)[J]. Langmuir, 2013, 29(48): 14893-14902. DOI: 10.1021/la402832bhttp://dx.doi.org/10.1021/la402832b.
WIIG E O, JUHOLA A J. The adsorption of water vapor on activated charcoal[J]. Journal of the American Chemical Society, 1949, 71(2): 561-568. DOI: 10.1021/ja01170a051http://dx.doi.org/10.1021/ja01170a051.
NAKAMURA M, OHBA T, BRANTON P, et al. Equilibration-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons[J]. Carbon, 2010, 48(1): 305-308. DOI: 10.1016/j.carbon.2009.09.008http://dx.doi.org/10.1016/j.carbon.2009.09.008.
HORIKAWA T, MUGURUMA T, DO D D, et al. Scanning curves of water adsorption on graphitized thermal carbon black and ordered mesoporous carbon[J]. Carbon, 2015, 95: 137-143. DOI: 10.1016/j.carbon.2015.08.034http://dx.doi.org/10.1016/j.carbon.2015.08.034.
HAO G P, MONDIN G, ZHENG Z K, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie-International Edition, 2015, 54(6): 1941-1945. DOI: 10.1002/anie.201409439http://dx.doi.org/10.1002/anie.201409439.
LEGRAND U, KLASSEN D, WATSON S, et al. Nanoporous sponges as carbon-based sorbents for atmospheric water generation[J]. Industrial & Engineering Chemistry Research, 2021, 60(35): 12923-12933. DOI: 10.1021/acs.iecr.1c02248http://dx.doi.org/10.1021/acs.iecr.1c02248.
SONG Y, XU N, LIU G L, et al. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels[J]. Nature Nanotechnology, 2022, 17(8): 857-863. DOI: 10.1038/s41565-022-01135-yhttp://dx.doi.org/10.1038/s41565-022-01135-y.
ITO M, WATANABE F, HASATANI M. Improvement on both adsorption performance of silica gel and heat transfer characteristics by means of its direct heat exchange modulation for heat pump[J]. Kagaku Kogaku Ronbunshu, 1996, 22(1): 163-170. DOI: 10.1252/kakoronbunshu.22.163http://dx.doi.org/10.1252/kakoronbunshu.22.163.
STACH H, MUGELE J, JANCHEN J, et al. Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents[J]. Adsorption-Journal of the International Adsorption Society, 2005, 11(3-4): 393-404. DOI: 10.1007/s10450-005-5405-xhttp://dx.doi.org/10.1007/s10450-005-5405-x.
YAMAZAKI S, TSUTSUMI K. Synthesis of A-type zeolite membrane using a plate heater and its formation mechanism[J]. Microporous and Mesoporous Materials, 2000, 37(1-2): 67-80. DOI: 10.1016/S1387-1811(99)00194-8http://dx.doi.org/10.1016/S1387-1811(99)00194-8.
NG E P, MINTOVA S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity[J]. Microporous and Mesoporous Materials, 2008, 114(1-3): 1-26. DOI: 10.1016/j.micromeso.2007.12.022http://dx.doi.org/10.1016/j.micromeso.2007.12.022.
JIA C X, DAI Y J, WU J Y, et al. Use of compound desiccant to develop high performance desiccant cooling system[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2007, 30(2): 345-353. DOI: 10.1016/j.ijrefrig.2006.04.001http://dx.doi.org/10.1016/j.ijrefrig.2006.04.001.
KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336): 430-432. DOI: 10.1126/science.aam8743http://dx.doi.org/10.1126/science.aam8743.
KIM H, RAO S R, KAPUSTIN E A, et al. Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature Communications, 2018, 9: 1191. DOI: 10.1038/s41467-018-03162-7http://dx.doi.org/10.1038/s41467-018-03162-7.
FATHIEH F, KALMUTZKI M J, KAPUSTIN E A, et al. Practical water production from desert air[J]. Science Advances, 2018, 4(6): eaat3198. DOI: 10.1126/sciadv.aat3198http://dx.doi.org/10.1126/sciadv.aat3198.
HANIKEL N, PREVOT M S, YAGHI O M. MOF water harvesters[J]. Nature Nanotechnology, 2020, 15(5): 348-355. DOI: 10.1038/s41565-020-0673-xhttp://dx.doi.org/10.1038/s41565-020-0673-x.
AKIYAMA G, MATSUDA R, SATO H, et al. Effect of functional groups in MIL-101 on water sorption behavior[J]. Microporous and Mesoporous Materials, 2012, 157: 89-93. DOI: 10.1016/j.micromeso.2012.01.015http://dx.doi.org/10.1016/j.micromeso.2012.01.015.
CADIAU A, LEE J S, BORGES D D, et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation[J]. Advanced Materials, 2015, 27(32): 4775-4780. DOI: 10.1002/adma.201502418http://dx.doi.org/10.1002/adma.201502418.
NGUYEN H L, GROPP C, HANIKEL N, et al. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting[J]. Acs Central Science, 2022, 8: 926-932. DOI: 10.1021/acscentsci.2c00398http://dx.doi.org/10.1021/acscentsci.2c00398.
NGUYEN H L, HANIKEL N, LYLE S J, et al. A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting[J]. Journal of the American Chemical Society, 2020, 142(5): 2218-2221. DOI: 10.1021/jacs.9b13094http://dx.doi.org/10.1021/jacs.9b13094.
NGUYEN H L. Covalent organic frameworks for atmospheric water harvesting[J]. Advanced Materials, 2023, 35(17): 2300018. DOI: 10.1002/adma.202300018http://dx.doi.org/10.1002/adma.202300018.
CHEN L H, HAN W K, YAN X D, et al. A highly stable-ketoenamine covalent organic framework with balanced hydrophilic and hydrophobic sites for atmospheric water harvesting[J]. Chemsuschem, 2022, 15(24): e202201824. DOI: 10.1002/cssc.202201824http://dx.doi.org/10.1002/cssc.202201824.
GRUNENBERG L, SAVASCI G, EMMERLING S T, et al. Postsynthetic transformation of imine- into nitrone-linked covalent organic frameworks for atmospheric water harvesting at decreased humidity[J]. Journal of the American Chemical Society, 2023, 145(24): 13241-13248. DOI: 10.1021/jacs.3c02572http://dx.doi.org/10.1021/jacs.3c02572.
JIANG S, MENG L C, MA W Y, et al. Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting[J]. Materials Chemistry Frontiers, 2021, 5(11): 4193-4201. DOI: 10.1039/d1qm00231ghttp://dx.doi.org/10.1039/d1qm00231g.
SUN C, SHENG D F, WANG B, et al. Covalent organic frameworks for extracting water from air[J]. Angewandte Chemie-International Edition, 2023, 62(25): e202303378. DOI: 10.1002/anie.202303378http://dx.doi.org/10.1002/anie.202303378.
MAITI S, SHARMA J K, LING J H, et al. Emissive substoichiometric covalent organic frameworks for water sensing and harvesting[J]. Macromolecular Rapid Communications, 2023, 44(11): 2200751. DOI: 10.1002/marc.202200751http://dx.doi.org/10.1002/marc.202200751.
SUN C, ZHU Y H, SHAO P P, et al. 2D covalent organic framework for water harvesting with fast kinetics and low regeneration temperature[J]. Angewandte Chemie-International Edition, 2023, 62(11): e202217103. DOI: 10.1002/anie.202217103http://dx.doi.org/10.1002/anie.202217103.
GILMANOVA L, BON V, SHUPLETSOV L, et al. Chemically stable carbazole-based imine covalent organic frameworks with acidochromic response for humidity control applications[J]. Journal of the American Chemical Society, 2021, 143(44): 18368-18373. DOI: 10.1021/jacs.1c07148http://dx.doi.org/10.1021/jacs.1c07148.
STEGBAUER L, HAHN M W, JENTYS A, et al. Tunable water and CO2 sorption properties in isostructural azine-based covalent organic frameworks through polarity engineering[J]. Chemistry of Materials, 2015, 27(23): 7874-7881. DOI: 10.1021/acs.chemmater.5b02151http://dx.doi.org/10.1021/acs.chemmater.5b02151.
LOW J J, BENIN A I, JAKUBCZAK P, et al. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration[J]. Journal of the American Chemical Society, 2009, 131(43): 15834-15842. DOI: 10.1021/ja9061344http://dx.doi.org/10.1021/ja9061344.
WANG X Y, LI X Q, LIU G L, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator[J]. Angewandte Chemie-International Edition, 2019, 58(35): 12054-12058. DOI: 10.1002/anie.201905229http://dx.doi.org/10.1002/anie.201905229.
MAUER L J, TAYLOR L S. Water-solids interactions: Deliquescence[J]. Annual Review of Food Science and Technology, Vol 1, 2010, 1: 41-63. DOI: 10.1146/annurev.food.080708.100915http://dx.doi.org/10.1146/annurev.food.080708.100915.
ENTEZARI A, EJEIAN M, WANG R Z. Extraordinary air water harvesting performance with three phase sorption[J]. Materials Today Energy, 2019, 13: 362-373. DOI: 10.1016/j.mtener.2019.07.001http://dx.doi.org/10.1016/j.mtener.2019.07.001.
ENTEZARI A, EJEIAN M, WANG R Z. Modifying water sorption properties with polymer additives for atmospheric water harvesting applications[J]. Applied Thermal Engineering, 2019, 161: 114109. DOI: 10.1016/j.applthermaleng.2019.114109http://dx.doi.org/10.1016/j.applthermaleng.2019.114109.
ENTEZARI A, EJEIAN M, WANG R Z. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts[J]. Acs Materials Letters, 2020, 2(5): 471-477. DOI: 10.1021/acsmaterialslett.9b00315http://dx.doi.org/10.1021/acsmaterialslett.9b00315.
ENTEZARI A, GE T S, WANG R Z. Water adsorption on the coated aluminum sheets by composite materials (LiCl plus LiBr)/silica gel[J]. Energy, 2018, 160: 64-71. DOI: 10.1016/j.energy.2018.06.210http://dx.doi.org/10.1016/j.energy.2018.06.210.
GAO J, WANG L W, WANG R Z, et al. Solution to the sorption hysteresis by novel compact composite multi-salt sorbents[J]. Applied Thermal Engineering, 2017, 111: 580-585. DOI: 10.1016/j.applthermaleng.2016.09.152http://dx.doi.org/10.1016/j.applthermaleng.2016.09.152.
GREKOVA A D, GORDEEVA L G, LU Z S, et al. Composite "LiCl/MWCNT" as advanced water sorbent for thermal energy storage: Sorption dynamics[J]. Solar Energy Materials and Solar Cells, 2018, 176: 273-279. DOI: 10.1016/j.solmat.2017.12.011http://dx.doi.org/10.1016/j.solmat.2017.12.011.
HU Y, FANG Z, MA X, et al. CaCl2 Nanocrystals decorated photothermal Fe-ferrocene MOFs hollow microspheres for atmospheric water harvesting[J]. Applied Materials Today, 2021, 23: 101076. DOI: 10.1016/j.apmt.2021.101076http://dx.doi.org/10.1016/j.apmt.2021.101076.
KALLENBERGER P A, FROBA M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix[J]. Communications Chemistry, 2018, 1: 28. DOI: 10.1038/s42004-018-0028-9http://dx.doi.org/10.1038/s42004-018-0028-9.
KIM S, LIANG Y, KANG S, et al. Solar-assisted smart nanofibrous membranes for atmospheric water harvesting[J]. Chemical Engineering Journal, 2021, 425: 131601. DOI: 10.1016/j.cej.2021.131601http://dx.doi.org/10.1016/j.cej.2021.131601.
LI R Y, SHI Y, WU M C, et al. Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent[J]. Nano Energy, 2020, 67: 104255. DOI: 10.1016/j.nanoen.2019.104255http://dx.doi.org/10.1016/j.nanoen.2019.104255.
LIU J Y, WANG J Y, WANG L W, et al. Experimental investigation on properties of composite sorbents for three-phase sorption-water working pairs[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2017, 83: 51-59. DOI: 10.1016/j.ijrefrig.2017.07.007http://dx.doi.org/10.1016/j.ijrefrig.2017.07.007.
LIU X Y, WANG W W, XIE S T, et al. Performance characterization and application of composite adsorbent LiCl@ACFF for moisture harvesting[J]. Scientific Reports, 2021, 11(1): 14412. DOI: 10.1038/s41598-021-93784-7http://dx.doi.org/10.1038/s41598-021-93784-7.
MA Q L, ZHENG X. Preparation and characterization of thermo-responsive composite for adsorption-based dehumidification and water harvesting[J]. Chemical Engineering Journal, 2022, 429: 132498. DOI: 10.1016/j.cej.2021.132498http://dx.doi.org/10.1016/j.cej.2021.132498.
SHAN H, PAN Q W, XIANG C J, et al. High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane[J]. Cell Reports Physical Science, 2021, 2(12): 100664. DOI: 10.1016/j.xcrp.2021.100664http://dx.doi.org/10.1016/j.xcrp.2021.100664.
WANG J Y, LIU J Y, WANG R Z, et al. Experimental research of composite solid sorbents for fresh water production driven by solar energy[J]. Applied Thermal Engineering, 2017, 121: 941-950. DOI: 10.1016/j.applthermaleng.2017.04.161http://dx.doi.org/10.1016/j.applthermaleng.2017.04.161.
WANG J Y, LIU J Y, WANG R Z, et al. Experimental investigation on two solar-driven sorption based devices to extract fresh water from atmosphere[J]. Applied Thermal Engineering, 2017, 127: 1608-1616. DOI: 10.1016/j.applthermaleng.2017.09.063http://dx.doi.org/10.1016/j.applthermaleng.2017.09.063.
XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109. DOI: 10.1016/j.enconman.2018.05.077http://dx.doi.org/10.1016/j.enconman.2018.05.077.
YANG K J, SHI Y, WU M C, et al. Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination[J]. Journal of Materials Chemistry A, 2020, 8(4): 1887-1895. DOI: 10.1039/c9ta11721khttp://dx.doi.org/10.1039/c9ta11721k.
YILMAZ G, MENG F L, LU W, et al. Autonomous atmospheric water seeping MOF matrix[J]. Science Advances, 2020, 6(42): eabc8605. DOI: 10.1126/sciadv.abc8605http://dx.doi.org/10.1126/sciadv.abc8605.
ZHAO H Z, ZHANG Z Z, HOU H W, et al. Hygroscopic salt-modulated UiO-66: Synthesis and its open adsorption performance[J]. Journal of Solid State Chemistry, 2021, 301: 122304. DOI: 10.1016/j.jssc.2021.122304http://dx.doi.org/10.1016/j.jssc.2021.122304.
XU J X, LI T X, CHAO J W, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt[J]. Angewandte Chemie-International Edition, 2020, 59(13): 5202-5210. DOI: 10.1002/anie.201915170http://dx.doi.org/10.1002/anie.201915170.
WANG W L, WU L M, LI Z, et al. An overview of adsorbents in the rotary desiccant dehumidifier for air dehumidification[J]. Drying Technology, 2013, 31(12): 1334-1345. DOI: 10.1080/07373937.2013.792094http://dx.doi.org/10.1080/07373937.2013.792094.
POREDOS P, SHAN H, WANG C X, et al. Sustainable water generation: grand challenges in continuous atmospheric water harvesting[J]. Energy & Environmental Science, 2022, 15(8): 3223-3235. DOI: 10.1039/d2ee01234khttp://dx.doi.org/10.1039/d2ee01234k.
KUMAR M, YADAV A. Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air[J]. Journal of Renewable and Sustainable Energy, 2015, 7(3): 033122. DOI: 10.1063/1.4922142http://dx.doi.org/10.1063/1.4922142.
WILLIAM G E, MOHAMED M H, FATOUH M. Desiccant system for water production from humid air using solar energy[J]. Energy, 2015, 90: 1707-1720. DOI: 10.1016/j.energy.2015.06.125http://dx.doi.org/10.1016/j.energy.2015.06.125.
MOHAMED M H, WILLIAM G E, FATOUH M. Solar energy utilization in water production from humid air[J]. Solar Energy, 2017, 148: 98-109. DOI: 10.1016/j.solener.2017.03.066http://dx.doi.org/10.1016/j.solener.2017.03.066.
SRIVASTAVA S, YADAV A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power[J]. Solar Energy, 2018, 169: 302-315. DOI: 10.1016/j.solener.2018.03.089http://dx.doi.org/10.1016/j.solener.2018.03.089.
KABEEL A E. Water production from air using multi-shelves solar glass pyramid system[J]. Renewable Energy, 2007, 32(1): 157-172. DOI: 10.1016/j.renene.2006.01.015http://dx.doi.org/10.1016/j.renene.2006.01.015.
KABEEL A E, HAMED A M, EL-AGOUZ S A. Cost analysis of different solar still configurations[J]. Energy, 2010, 35(7): 2901-2908. DOI: 10.1016/j.energy.2010.03.021http://dx.doi.org/10.1016/j.energy.2010.03.021.
JI J G, WANG R Z, LI L X. New composite adsorbent for solar-driven fresh water production from the atmosphere[J]. Desalination, 2007, 212(1-3): 176-182. DOI: 10.1016/j.desal.2006.10.008http://dx.doi.org/10.1016/j.desal.2006.10.008.
TU Y D, WANG R Z, GE T S, et al. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers[J]. Scientific Reports, 2017, 7: 40437. DOI: 10.1038/srep40437http://dx.doi.org/10.1038/srep40437.
LAPOTIN A, ZHONG Y, ZHANG L A, et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production[J]. Joule, 2021, 5(1): 166-182. DOI: 10.1016/j.joule.2020.09.008http://dx.doi.org/10.1016/j.joule.2020.09.008.
XU J X, LI T X, YAN T S, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent[J]. Energy & Environmental Science, 2021, 14(11): 5979. DOI: 10.1039/d1ee01723chttp://dx.doi.org/10.1039/d1ee01723c.
EJEIAN M, ENTEZARI A, WANG R Z. Solar powered atmospheric water harvesting with enhanced LiCl /MgSO4/ACF composite[J]. Applied Thermal Engineering, 2020, 176: 115396. DOI: 10.1016/j.applthermaleng.2020.115396http://dx.doi.org/10.1016/j.applthermaleng.2020.115396.
HANIKEL N, PREVOT M S, FATHIEH F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester[J]. Acs Central Science, 2019, 5(10): 1699-1706. DOI: 10.1021/acscentsci.9b00745http://dx.doi.org/10.1021/acscentsci.9b00745.
WANG J Y, WANG R Z, TU Y D, et al. Universal scalable sorption-based atmosphere water harvesting[J]. Energy, 2018, 165: 387-395. DOI: 10.1016/j.energy.2018.09.106http://dx.doi.org/10.1016/j.energy.2018.09.106.
WANG W W, PAN Q W, XING Z L, et al. Viability of a practical multicyclic sorption-based water harvester with improved water yield[J]. Water Research, 2022, 211: 118029. DOI: 10.1016/j.watres.2021.118029http://dx.doi.org/10.1016/j.watres.2021.118029.
WANG W W, XIE S T, PAN Q W, et al. Air-cooled adsorption-based device for harvesting water from island air[J]. Renewable & Sustainable Energy Reviews, 2021, 141: 110802. DOI: 10.1016/j.rser.2021.110802http://dx.doi.org/10.1016/j.rser.2021.110802.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构