浏览全部资源
扫码关注微信
1.山西大学 生命科学学院,山西 太原 030006
2.山西大学 合成生物学学院,山西 太原 030006
3.山西大学 应用生物学研究所,山西 太原 030006
[ "张建珍,女,二级教授,博士生导师。山西大学合成生物学学院执行院长。爱思唯尔2020—2022中国高被引学者,入选2023、2024年全球前2%顶尖科学家榜单。担任“核酸生物农药”山西省重点实验室主任。主持完成国家自然科学基金重点项目、中德国际合作项目,科技部重点研发计划中埃国际合作项目等国家级研究任务。在PLoS Genetics,JBC,IBMB等国际主流学术期刊发表研究论文百余篇,获授权发明专利10余项。作为第一完成人获得山西省自然科学二等奖1项。" ]
收稿日期:2025-02-17,
修回日期:2025-03-07,
纸质出版日期:2025-03-25
移动端阅览
张建珍,李帅,李涛等.RNA农药的生物合成与产业现状[J].新兴科学和技术趋势,2025,4(1):13-20.
ZHANG Jianzhen,LI Shuai,LI Tao,et al.Biosynthesis and industrial status of RNA pesticides[J].Emerging Science and Technology,2025,4(1):13-20.
张建珍,李帅,李涛等.RNA农药的生物合成与产业现状[J].新兴科学和技术趋势,2025,4(1):13-20. DOI: 10.12405/j.issn.2097-1486.2025.01.002.
ZHANG Jianzhen,LI Shuai,LI Tao,et al.Biosynthesis and industrial status of RNA pesticides[J].Emerging Science and Technology,2025,4(1):13-20. DOI: 10.12405/j.issn.2097-1486.2025.01.002.
粮食安全是国家安全的重要基础,病虫害严重影响作物产量和品质,化学农药长期不合理使用引发抗药性、环境污染等一系列问题,研发高效、环保、安全的新型农药成为农业绿色发展的必然趋势。RNA农药是基于RNA干扰(RNAi)技术的新一代农药,因其特异性强、研发周期短、无残留、对非靶标生物影响小等优势,成为国际研究前沿热点和产业重点关注领域。本文围绕RNA农药展开论述,首先,介绍了其研发背景,指出RNA农药是应对农业病虫害防控难题的有效途径;其次,阐述了RNA农药的生物合成方式,包括细菌底盘生产、酵母底盘生产和无细胞生产,比较了不同生产方式的优劣性;然后,探讨了RNA农药的产业化现状,介绍了全球市场规模及增长趋势,国内外企业和科研团队在RNA农药研发和应用方面的成果,以及我国相关政策对RNA农药发展的导向作用;最后,提出我国在RNA农药应用领域需要建立相关技术标准和完善法律法规,以促进其商业化进程。本文旨在为RNA农药的发展趋势及政策解读提供参考,助力RNA农药的研发与应用推广。
Food security is a fundamental pillar of national security. Insect pests significantly affect crop yield and quality, while the long-term improper use of chemical pesticides has led to a series of problems such as drug resistance and environmental pollution. Developing highly efficient, eco-friendly, and safe new pesticides has become an inevitable trend for the green development of agriculture. RNA pesticides, a new generation of pesticides based on RNA interference (RNAi) technology, have emerged as a frontier in international research and a key focus of the industry due to their advantages of strong specificity, Short research and development cycle, no residue, and minimal impact on non-target organisms. This paper discusses RNA pesticides, first, introducing their research and development background and highlighting their effectiveness in addressing the challenges of agricultural pest and disease control. Next, it then elaborates on their biosynthesis methods, including bacterial chassis production, yeast chassis production, and cell-free production, comparing the advantages and disadvantages of different approaches. The paper further explores the industrialization status of RNA pesticides, covering global market size and growth trends, the achievements of domestic and international enterprises and research teams in their R&D and application, and the guiding role of relevant Chinese policies in promoting their development. Finally, it proposes that China needs to establish relevant technical standards and improve laws and regulations in the application of RNA pesticides to accelerate their commercialization. This study aims to provide insights into the development trends and policy context of RNA biopesticides, supporting the R&D and promotion of RNA pesticides.
WANG H L , LIU H , WANG D Y . Agricultural Insurance, Climate Change, and Food Security: Evidence from Chinese Farmers [J]. Sustainability , 2022 , 14 ( 15 ): 9493 . DOI: 10.3390/su14159493 http://dx.doi.org/10.3390/su14159493 .
SAVARY S , WILLOCQUET L , PETHYBRIDGE S J , et al . The global burden of pathogens and pests on major food crops [J]. Nature Ecology and Evolution , 2019 , 3 ( 3 ): 430 - 439 . DOI: 10.1038/s41559-018-0793-y http://dx.doi.org/10.1038/s41559-018-0793-y .
RANK A P , KOCH A . Lab-to-Field Transition of RNA Spray Applications - How Far Are We? [J]. Frontiers in plant science , 2021 , 12 : 755203 . DOI: 10.3389/fpls.2021.755203 http://dx.doi.org/10.3389/fpls.2021.755203 .
TUDI M , DANIEL R H , WANG L , et al . Agriculture Development, Pesticide Application and Its Impact on the Environment [J]. International journal of environmental research and public health , 2021 , 18 ( 3 ): 1112 . DOI: 10.3390/ijerph18031112 http://dx.doi.org/10.3390/ijerph18031112 .
TIMMONS L , FIRE A . Specific interference by ingested dsRNA [J]. Nature , 1998 , 395 ( 6705 ): 854 . DOI: 10.1038/27579 http://dx.doi.org/10.1038/27579 .
CHRISTIAENS O , NIU J , NJI T T C . RNAi in insects: A revolution in fundamental research and pest control applications [J]. Insects , 2020 , 11 ( 7 ): 415 . DOI: 10.3390/insects11070415 http://dx.doi.org/10.3390/insects11070415 .
中华人民共和国农业农村部 . 关于印发《“十四五”全国农药产业发展规划》的通知;农农发 〔2022〕 3 号[EB/OL].( 2022-02-16 ). https://www.moa.gov.cn/xw/bmdt/202202/t20220216_6388804.htm https://www.moa.gov.cn/xw/bmdt/202202/t20220216_6388804.htm .
ZOTTI M , DOS S EA , CAGLIARI D , et al . RNA interference technology in crop protection against arthropod pests, pathogens and nematodes [J]. Pest management science , 2018 , 74 ( 6 ): 1239 - 1250 . DOI: 10.1002/ps.4813 http://dx.doi.org/10.1002/ps.4813 .
GREENLIGHT BIOSCIENCES . Feeding the world: RNA for agriculture [Z/OL].( 2025-02-10 ). https://www.greenlightbiosciences.com/ https://www.greenlightbiosciences.com/ .
RENAISSANCE BIOSCIENCE . Bioengineering better [Z/OL].( 2025-02-10 ). https://renaissancebioscience.com/ https://renaissancebioscience.com/ .
吕东 , 杨静 , 李国清 . 应用微生物发酵技术获得马铃薯甲虫脯氨酸脱氢酶基因双链RNA的初步研究 [J]. 农学 , 2010 , 49 ( 8 ): 571 - 573 . DOI: 10.16820/j.cnki.1006-0413.2010.08.008 http://dx.doi.org/10.16820/j.cnki.1006-0413.2010.08.008 .
王根洪 , 祝慧敏 , 罗会松 , 等 . 细菌表达dsRNA介导的家蚕FTZ-F1基因的RNA干扰 [J]. 昆虫学报 , 2011 , 54 ( 05 ) : 596 - 601 . DOI: 10.16380/j.kcxb.2011.05.015 http://dx.doi.org/10.16380/j.kcxb.2011.05.015 .
王越 , 张苏芳 , 徐瑶 , 等 . 美国白蛾几丁质酶细菌表达的RNA干扰载体构建及其介导的RNA干扰 [J]. 林业科学研究 , 2019 , 32 ( 02 ): 1 - 8 . DOI: 10.13275/j.cnki.lykxyj.2019.02.001 http://dx.doi.org/10.13275/j.cnki.lykxyj.2019.02.001 .
盛东萍 , 张晓阳 , 冯梦婷 , 等 . 松材线虫细胞色素 cyp-13A11 基因RNA干扰载体的构建及其功能分析 [J]. 北京林业大学学报 , 2021 , 43 ( 01 ): 96 - 102 . DOI: 10.12171/j.1000-1522.20200025 http://dx.doi.org/10.12171/j.1000-1522.20200025 .
YIN G , SUN Z , LIU N , et al . Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system [J]. Applied microbiology and biotechnology . 2009 , 84 ( 2 ): 323 - 333 . DOI: 10.1007/s00253-009-1967-y http://dx.doi.org/10.1007/s00253-009-1967-y .
MA Z Z , ZHOU H , WEI Y L , et al . A novel plasmid- Escherichia coli system produces large batch dsRNAs for insect gene silencing [J]. Pest management science , 2020 , 76 ( 7 ): 2505 - 2512 . DOI: 10.1002/ps.5792 http://dx.doi.org/10.1002/ps.5792 .
NWOKEOJI A O , NWOKEOJI E A , CJOU T , et al . A novel sustainable platform for scaled manufacturing of double-stranded RNA biopesticides [J]. Bioresources and Bioprocessing , 2022 , 9 ( 1 ): 107 . DOI: 10.1186/s40643-022-00596-2 http://dx.doi.org/10.1186/s40643-022-00596-2 .
DELGADO-MARTIN J , VELASCO L . An efficient dsRNA constitutive expression system in Escherichia coli [J]. Applied microbiology and biotechnology , 2021 , 105 ( 16-17 ): 6381 - 6393 . DOI: 10.1007/s00253-021-11494-6 http://dx.doi.org/10.1007/s00253-021-11494-6 .
THAMMASORN T , SANGSURIYA P , MEEMETTA W , et al . Large-scale production and antiviral efficacy of multi-target double-stranded RNA for the prevention of white spot syndrome virus (WSSV) in shrimp [J]. BioMed Central biotechnology Biotechnology , 2015 , 15 ( 1 ): 110 . DOI: 10.1186/s12896-015-0226-9 http://dx.doi.org/10.1186/s12896-015-0226-9 .
常瑞 , 王俊 , 付开赟 . 4种原核表达双链RNA的dsRNA提取方法效果评价 [J]. 新疆农业科学 , 2021 , 53 ( 04 ): 700 - 711 . DOI: 10.6048/j.issn.1001-4330.2021.04.013 http://dx.doi.org/10.6048/j.issn.1001-4330.2021.04.013 .
HAPAIRAI L K , MYSORE K , CHEN Y , et al . Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti [J]. Scientific reports , 2017 , 7 ( 1 ): 13223 . DOI: 10.1038/s41598-017-13566-y http://dx.doi.org/10.1038/s41598-017-13566-y .
MYSORE K , HAPAIRAI LK , SUN L , et al . Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality [J]. Malaria Journal , 2017 , 16 ( 1 ): 461 . DOI: 10.1186/s12936-017-2112-5 http://dx.doi.org/10.1186/s12936-017-2112-5 .
MURPHY K A , TABULOC C A , CERVANTES K R , et al . Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference [J]. Scientific reports , 2016 , 6 ( 1 ): 22587 . DOI: 10.1038/srep22587 http://dx.doi.org/10.1038/srep22587 .
CARLSON E D , GAN R , HODGMAN C E , et al . Cell-free protein synthesis: applications come of age [J]. Biotechnology advances , 2012 , 30 ( 5 ): 1185 - 1194 . DOI: 10.1016/j.biotechadv.2011.09.016 http://dx.doi.org/10.1016/j.biotechadv.2011.09.016 .
ROLF J , ROSENTHAL K , LUTZ S . Application of Cell-Free Protein Synthesis for Faster Biocatalyst Development [J]. Catalysts , 2019 , 9 ( 2 ): 190 . DOI: 10.3390/catal9020190 http://dx.doi.org/10.3390/catal9020190 .
NIRENBERG M W , MATTHAEI J H . The dependence of cell-free protein synthesis in E.coli upon naturally occurring or synthetic polyribo nucleotides [J]. Proceedings of the National Academy of Sciences of the United States of America , 1961 , 47 ( 10 ): 1588 - 1602 . DOI: 10.1073/pnas.47.10.1588 http://dx.doi.org/10.1073/pnas.47.10.1588 .
YANG W C , PATEL K G , WONG H E , et al . Simplifying and streamlining Escherichia coli -based cell-free protein synthesis [J]. Biotechnology progress , 2012 , 28 ( 2 ): 413 - 420 . DOI: 10.1002/btpr.1509 http://dx.doi.org/10.1002/btpr.1509 .
KIM D M , SWARTZ J R . Prolonging cell-free protein synthesis by selective reagent additions [J]. Biotechnology progress , 2000 , 16 ( 3 ): 385 - 390 . DOI: 10.1021/bp000031y http://dx.doi.org/10.1021/bp000031y .
CALHOUN K A , SWARTZ J R . An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates [J]. Biotechnology progress , 2005 , 21 ( 4 ): 1146 - 1153 . DOI: 10.1021/bp050052y http://dx.doi.org/10.1021/bp050052y .
GREENLIGHT BIOSCIENCES . Calantha: A critical new Mode of Action for Potato Growers [Z/OL].( 2025-02-10 ). https://greenlightbiosciences.com/category/products/ https://greenlightbiosciences.com/category/products/ .
中华人民共和国农业农村部 . 关于公开征求《农业农村部关于修改〈农药登记管理办法〉等5部规章的决定(征求意见稿)》意见的通知 [EB/OL].( 2024-11-04 ). https://www.moa.gov.cn/govpublic/CYZCFGS/202411/t20241104_6465646.htm?_refluxos=a10 https://www.moa.gov.cn/govpublic/CYZCFGS/202411/t20241104_6465646.htm?_refluxos=a10 .
中华人民共和国农业农村部 . 农药登记信息2024年第 5 期[EB/OL].( 2024-03-20 ). http://www.zzys.moa.gov.cn/gdxw/202404/t20240407_6453111.htm http://www.zzys.moa.gov.cn/gdxw/202404/t20240407_6453111.htm .
LEVINE S L , TAN J , MUELLER G M , et al . Independent action between DvSnf7 RNA and Cry3Bb1 protein in southern corn rootworm, Diabrotica undecimpunctata howardi and Colorado potato beetle, Leptinotarsa decemlineata [J]. PLoS One , 2015 , 10 ( 3 ): e0118622 . DOI: 10.1371/journal.pone.0118622 http://dx.doi.org/10.1371/journal.pone.0118622 .
BOECKMAN C J , ANDERSON J A , LINDERBLOOD C , et al . Environmental risk assessment of the DvSSJ1 dsRNA and the IPD072Aa protein to non-target organisms [J]. GM crops & food , 2021 , 12 ( 1 ): 459 - 478 . DOI: 10.1080/21645698.2021.1982348 http://dx.doi.org/10.1080/21645698.2021.1982348 .
MAO Y B , CAI W J , WANG J W , et al . Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol [J]. Nature biotechnology , 2007 , 25 ( 11 ), 1307 - 1313 . DOI: 10.1038/nbt1352 http://dx.doi.org/10.1038/nbt1352 .
ZHANG T , ZHAO Y L , ZHAO J H , et al . Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen [J]. Nature plants , 2016 , 2 ( 10 ): 16153 . DOI: 10.1038/nplants.2016.153 http://dx.doi.org/10.1038/nplants.2016.153 .
LIU F , YANG B , ZHANG A , et al . Plant-mediated RNAi for controlling Apolygus lucorum [J]. Frontiers in plant science , 2019 , 10 : 64 . DOI: 10.3389/fpls.2019.00064 http://dx.doi.org/10.3389/fpls.2019.00064 .
TANING C N , ARPAIA S , CHRISTIAENS O , et al . RNA-based biocontrol compounds: Current status and perspectives to reach the market [J]. Pest management science , 2020 , 76 ( 3 ): 841 - 845 . DOI: 10.1002/ps.5686 http://dx.doi.org/10.1002/ps.5686 .
关若冰 , 李海超 , 苗雪霞 . RNA生物农药的商业化现状及存在问题 [J]. 中国农业科学 , 2022 , 55 ( 15 ): 2949 - 2960 . DOI: 10.3864/j.issn.0578-1752.2022.15.007 http://dx.doi.org/10.3864/j.issn.0578-1752.2022.15.007 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构