浏览全部资源
扫码关注微信
1.中国农业科学院 植物保护研究所,北京 100193
2.东北农业大学 生命科学学院,黑龙江 哈尔滨 150030
3.山西新源华康生物科技股份有限公司,山西 太原 041000
[ "向文胜,男,教授,博士,博士生导师,国家杰出青年科学基金获得者,教育部“长江学者”特聘教授,国家“万人计划”领军人才、国家百千万人才工程有突出贡献中青年专家、科技部中青年科技创新领军人才、农业农村部农业科研杰出人才。目前主要从事微生物天然产物农药创制研究,主持国家和省部级项目十余项。实现4个筛选新微生物的发酵和半合成7个产品产业化,获得8个新药证书。以第一作者或通讯作者在Nat Biotechnol,Proc Natl Acad Sci,Nat Commun,Curr Opin Biotech,Metab Eng,Org. Lett.,中国科学等期刊发表SCI论文350余篇,参与出版著作3部。" ]
[ "李珊珊,女,研究员,博士,博士生导师,国家高层次青年人才特殊计划获得者,担任中国植物保护学会女科技工作者工作委员会秘书长,微生物药物与天然产物专业委员会委员,Biology,Frontiers of Microbiology等学术期刊编委,New Plant Protection和农药学学报青年编委;目前主要从事放线菌天然产物农药合成生物学应用基础研究工作;主持国家级项目/课题5项;在Nat Biotechnol,Sci Adv,Sci Bull等期刊发表论文40余篇;授权国家发明专利8件。" ]
收稿日期:2025-02-19,
修回日期:2025-03-02,
纸质出版日期:2025-03-25
移动端阅览
李晓瑾,潘明慧,马子涵等.放线菌天然产物农药生物合成研究进展[J].新兴科学和技术趋势,2025,4(1):21-35.
LI Xiaojin,PAN Minghui,MA Zihan,et al.Advancements in biosynthesis of natural product pesticides from actinomycetes[J].Emerging Science and Technology,2025,4(1):21-35.
李晓瑾,潘明慧,马子涵等.放线菌天然产物农药生物合成研究进展[J].新兴科学和技术趋势,2025,4(1):21-35. DOI: 10.12405/j.issn.2097-1486.2025.01.003.
LI Xiaojin,PAN Minghui,MA Zihan,et al.Advancements in biosynthesis of natural product pesticides from actinomycetes[J].Emerging Science and Technology,2025,4(1):21-35. DOI: 10.12405/j.issn.2097-1486.2025.01.003.
放线菌因出色的活性天然产物生物合成能力闻名遐迩,由其产生的天然产物结构和功能多样,一直是天然产物新药创制的重要源头。当前农药市场中,天然产物农药大品种主要由放线菌产生。然而,放线菌来源的天然产物在农药研发及产业化进程中面临产量低、成本高等困境。近年来,随着多组学技术、人工智能和合成生物学的快速发展,研究者对放线菌天然产物复杂生物合成过程的认知逐渐深入,建立了多样化的菌株生物合成优化策略,推动了放线菌天然产物农药生物制造能力的提升。本文从天然产物装配线、前体供给平衡、调控网络、辅因子供给与生物合成系统物质交换五个层面,阐述了放线菌天然产物农药高效生物合成研究进展,为天然产物农药的绿色高效生物制造提供了重要指导。
Actinomycetes are renowned for their exceptional biosynthetic capabilities in producing bioactive natural products. The structurally diverse and functionally versatile compounds derived from these microorganisms have consistently served as a vital source for innovative drug discovery in the pharmaceutical industry. In the current pesticide market, major varieties of natural product pesticides are mainly produced by actinomycetes. Nevertheless, actinomycetes natural products still face such challenges as low yields and high production costs during industrialization. In recent years, with the rapid development of multi-omics technologies, artificial intelligence, and synthetic biology, researchers have gained deeper insights into the complex biosynthetic processes of actinomycetes natural products. These advancements have enabled the establishment of diversified strategies for optimizing strain biosynthesis, significantly enhancing the bio-manufacturing capabilities of natural product pesticides from actinomycetes. This article summarizes the advances on efficient biosynthesis of natural product pesticides from actinomycetes from five aspects, including natural product assembly lines, precursor enhancement, regulatory network, cofactor supply and balance, and material exchange system. It provides guidance for green and efficient bio-manufacturing of natural product pesticides.
SECRETARIAT I . Scientific review of the impact of climate change on plant pests [M]. Rome, Italy : FAO on behalf of the IPPC Secretariat , 2021 .
LI Z , SHAO X , LEE P W , et al . Green Pesticide R&D in China [J]. Journal of Agricultural and Food Chemistry , 2023 , 71 ( 14 ): 5417 - 5418 . DOI: 10.1021/acs.jafc.2c07671 http://dx.doi.org/10.1021/acs.jafc.2c07671 .
中华人民共和国农业农村部 . 《到2020年农药使用量零增长行动方案》(农农发 〔2015〕2号)[EB/OL]. ( 2015-02-17 ). https://www.zzys.moa.gov.cn/gzdt/201503/t20150318_6309945.htm https://www.zzys.moa.gov.cn/gzdt/201503/t20150318_6309945.htm .
中华人民共和国农业农村部 . 农业农村部关于印发《“十四五”全国种植业发展规划》的通知(农农发 〔2021〕3号)[EB/OL]. ( 2021-12-31 ). https://www.moa.gov.cn/govpublic/ZZYGLS/202201/t20220113_6386808.htm https://www.moa.gov.cn/govpublic/ZZYGLS/202201/t20220113_6386808.htm .
农业农村部 等 . 农业农村部等八部门关于印发《“十四五”全国农药产业发展规划》的通知(农农发 〔2022〕1号)[EB/OL]. ( 2022-01-29 ). https://www.gov.cn/zhengce/zhengceku/2022-01/30/content_5671305.htm https://www.gov.cn/zhengce/zhengceku/2022-01/30/content_5671305.htm .
中研普华 . 2024年版生物农药产业规划专项研究报告 [M/OL]. 北京:中研普华研究院 , 2024 . https://www.chinairn.com/report/20240304/154210635.html https://www.chinairn.com/report/20240304/154210635.html .
VAN DER MEIJ A , WORSLEY S F , HUTCHINGS M I , et al . Chemical ecology of antibiotic production by actinomycetes [J]. FEMS Microbiology Reviews , 2017 , 41 ( 3 ): 392 - 416 . DOI: 10.1093/femsre/fux005 http://dx.doi.org/10.1093/femsre/fux005 .
CANTRELL C L , DAYAN F E , DUKE S O . Natural Products As Sources for New Pesticides [J]. Journal of Natural Products , 2012 , 75 ( 6 ): 1231 - 1242 . DOI: 10.1021/np300024u http://dx.doi.org/10.1021/np300024u .
LI S , LI Z , PANG S , et al . Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces [J]. Current Opinion in Biotechnology , 2021 , 69 : 26 - 34 . DOI: 10.1016/j.copbio.2020.11.006 http://dx.doi.org/10.1016/j.copbio.2020.11.006 .
赵国屏 . 合成生物学:从“造物致用”到产业转化 [J]. 生物工程学报 , 2022 , 38 ( 11 ): 4001 - 4011 . DOI: 10.13345/j.cjb.220837 http://dx.doi.org/10.13345/j.cjb.220837 .
BLIN K , SHAW S , MEDEMA M H , et al . The antiSMASH database version 4: additional genomes and BGCs, new sequence-based searches and more [J]. Nucleic Acids Research , 2024 , 52 ( D1 ): D586 - D589 . DOI: 10.1093/nar/gkad984 http://dx.doi.org/10.1093/nar/gkad984 .
KHALDI N , SEIFUDDIN F T , TURNER G , et al . SMURF: Genomic mapping of fungal secondary metabolite clusters [J]. Fungal Genetics and Biology , 2010 , 47 ( 9 ): 736 - 741 . DOI: 10.1016/j.fgb.2010.06.003 http://dx.doi.org/10.1016/j.fgb.2010.06.003 .
LI L Y , HU Y L , SUN J L , et al . Resistance and phylogeny guided discovery reveals structural novelty of tetracycline antibiotics [J]. Chemical Science , 2022 , 13 ( 43 ): 12892 - 12898 . DOI: 10.1039/D2SC03965F http://dx.doi.org/10.1039/D2SC03965F .
JU K S , GAO J , DOROGHAZI J R , et al . Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes [J]. Proceedings of the National Academy of Sciences , 2015 , 112 ( 39 ): 12175 - 12180 . DOI: 10.1073/pnas.1500873112 http://dx.doi.org/10.1073/pnas.1500873112 .
EZEOBIORA C E , IGBOKWE N H , AMIN D H , et al . Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes [J]. Future Journal of Pharmaceutical Sciences , 2022 , 8 ( 1 ): 23 . DOI: 10.1186/s43094-022-00410-y http://dx.doi.org/10.1186/s43094-022-00410-y .
ASOLKAR R N , KIRKLAND T N , JENSEN P R , et al . Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola [J]. The Journal of Antibiotics , 2010 , 63 ( 1 ): 37 - 39 . DOI: 10.1038/ja.2009.114 http://dx.doi.org/10.1038/ja.2009.114 .
IGARASHI Y , OGURA H , FURIHATA K , et al . Maklamicin, an Antibacterial Polyketide from an Endophytic Micromonospora sp . [J]. Journal of Natural Products , 2011 , 74 ( 4 ): 670 - 674 . DOI: 10.1021/np100727h http://dx.doi.org/10.1021/np100727h .
BARKA ESSAID A , VATSA P , SANCHEZ L , et al . Taxonomy, Physiology, and Natural Products of Actinobacteria [J]. Microbiology and Molecular Biology Reviews , 2015 , 80 ( 1 ): 1 - 43 . DOI: 10.1128/mmbr.00019-15 http://dx.doi.org/10.1128/mmbr.00019-15 .
潘明慧 , 杨雪 , 杜国忠 , 等 . 合成生物学助力链霉菌天然产物农药创制与产业化 [J]. 植物保护 , 2023 , 49 ( 05 ): 371 - 389 . DOI: 10.16688/j.zwbh.2023328 http://dx.doi.org/10.16688/j.zwbh.2023328 .
何亚文 , 李广悦 , 谭红 , 等 . 我国生防微生物代谢产物研发应用进展与展望 [J]. 中国生物防治学报 , 2022 , 38 ( 03 ): 537 - 548 . DOI: 10.16409/j.cnki.2095-039x.2022.02.028 http://dx.doi.org/10.16409/j.cnki.2095-039x.2022.02.028
TAN H , YANG X , DAI Q , et al . Unravelling the Biosynthetic Flexibility of UK-2A Enables Enzymatic Synthesis of Its Structural Variants [J]. ACS Synthetic Biology , 2019 , 8 ( 12 ): 2659 - 2665 . DOI: 10.1021/acssynbio.9b00387 http://dx.doi.org/10.1021/acssynbio.9b00387
JIANG H , WANG Y Y , RAN X X , et al . Improvement of Natamycin Production by Engineering of Phosphopantethe inyl Transferases in Streptomyces chattanoogensis L10 [J]. Applied and Environmental Microbiology , 2013 , 79 ( 11 ): 3346 - 3354 . DOI: 10.1128/AEM.00099-13 http://dx.doi.org/10.1128/AEM.00099-13
王莹 . 长川霉素产生菌的选育和生防菌株AⅠ的特性研究及鉴定 [D]. 上海 : 华东理工大学 , 2011 .
WAN Z , FANG W , SHI L , et al . Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821 [J]. The Journal of Antibiotics , 2015 , 68 ( 3 ): 185 - 190 . DOI: 10.1038/ja.2014.123 http://dx.doi.org/10.1038/ja.2014.123 .
纪明山 . 生物农药手册 [M]. 北京 : 化学工业出版社 , 2011 .
于晴 . 南昌霉素和寡霉素次级代谢合成的调控研究 [D]. 上海 : 上海交通大学 , 2012 .
刘乐诗 , 谭高翼 , 王为善 , 等 . 微生物, 高智商, 大产业: 合成生物学助力阿维菌素的高效智能制造 [J]. 生命科学 , 2019 , 31 ( 05 ): 516 - 525 . DOI: 10.13376/j.cbls/2019200 http://dx.doi.org/10.13376/j.cbls/2019200 .
DONG L , ZHANG J . Research progress of avermectin: A minireview based on the structural derivatization of avermectin [J]. Advanced Agrochem , 2022 , 1 ( 2 ): 100 - 112 . DOI: 10.1016/j.aac.2022.11.001 http://dx.doi.org/10.1016/j.aac.2022.11.001 .
SPARKS T C , CROUSE G D , BENKO Z , et al . The spinosyns, spinosad, spinetoram, and synthetic spinosyn mimics - discovery, exploration, and evolution of a natural product chemistry and the impact of computational tools [J]. Pest Management Science , 2021 , 77 ( 8 ): 3637 - 3649 . DOI: 10.1002/ps.6073 http://dx.doi.org/10.1002/ps.6073 .
YE L , ZHANG Y , LI S , et al . Transcriptome-guided identification of a four-component system, SbrH1-R, that modulates milbemycin biosynthesis by influencing gene cluster expression, precursor supply, and antibiotic efflux [J]. Synthetic and Systems Biotechnology , 2022 , 7 ( 2 ): 705 - 717 . DOI: 10.1016/j.synbio.2022.02.003 http://dx.doi.org/10.1016/j.synbio.2022.02.003 .
ZHANG J , AN J , WANG J J , et al . Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchang mycin [J]. Applied Microbiology and Biotechnology , 2013 , 97 ( 23 ): 10091 - 10101 . DOI: 10.1007/s00253-013-5255-5 http://dx.doi.org/10.1007/s00253-013-5255-5 .
申圭良 . 浏阳霉素毒性及防螨效果研究 [D]. 长沙 : 湖南农业大学 , 2010 .
刘倩 . 杀粉蝶菌素A1的生物合成研究 [D]. 上海 : 上海交通大学 , 2012 .
赵薇 . 链霉菌产生的除草霉素新组分发现及其他活性次级代谢产物研究 [D]. 北京 : 北京协和医院 , 2016 .
ZHAO W , JIANG B , WU L , et al . Two herbimycin analogs, 4,5-dihydro-(4S)-4-hydroxyherbimycin B and (15S)-15-hydroxyherbimycin B, from Streptomyces sp. CPCC 200291 [J]. The Journal of Antibiotics , 2015 , 68 ( 7 ): 476 - 480 . DOI: 10.1038/ja.2015.12 http://dx.doi.org/10.1038/ja.2015.12 .
TAN G Y , PENG Y , LU C , et al . Engineering validamycin production by tandem deletion of γ-butyrolactone receptor genes in Streptomyces hygroscopicus 5008 [J]. Metabolic Engineering , 2015 , 28 : 74 - 81 . DOI: 10.1016/j.ymben.2014.12.003 http://dx.doi.org/10.1016/j.ymben.2014.12.003 .
赵文彬 . 瑞拉菌素对10种作物种苗生长的影响 [D]. 咸阳 : 西北农业科技大学 , 2010 .
张宁波 . 农用抗生素研究进展 [J]. 湖北农业科学 , 2006 , 45 ( 6 ): 830 - 833 . DOI: 10.3969/j.issn.0439-8114.2006.06.052 http://dx.doi.org/10.3969/j.issn.0439-8114.2006.06.052 .
LI Z , HUANG P , WANG M , et al . Stepwise increase of thaxtomins production in Streptomyces albidoflavus J1074 through combinatorial metabolic engineering [J]. Metabolic Engineering , 2021 , 68 : 187 - 198 . DOI: 10.1016/j.ymben.2021.10.008 http://dx.doi.org/10.1016/j.ymben.2021.10.008 .
高向阳 . 新抗生素万隆霉素对黄瓜疫病菌的作用机理研究 [D]. 广州 : 华南理工大学 , 2005 .
王飞 , 金文兵 , 侯现锋 , 等 . 金核霉素生物合成途径的体内研究和关键代谢物鉴定 [J]. 有机化学 , 2023 , 43 ( 07 ): 2561 - 2566 . DOI: 10.6023/cjoc202301012 http://dx.doi.org/10.6023/cjoc202301012 .
赵人俊 . 多用途的农用抗生素: 庆丰霉素 [J]. 上海农业科技 , 1987 ( 5 ): 10 - 11 .
LIU C , BAI L , CAO P , et al . Novel Plant Growth Regulator Guvermectin from Plant Growth-Promoting Rhizobacteria Boosts Biomass and Grain Yield in Rice [J]. Journal of Agricultural and Food Chemistry , 2022 , 70 ( 51 ): 16229 - 16240 . DOI: 10.1021/acs.jafc.2c07072 http://dx.doi.org/10.1021/acs.jafc.2c07072 .
NING X , WANG X , WU Y , et al . Identification and Engineering of Post-PKS Modification Bottlenecks for Ansamitocin P-3 Titer Improvement in Actinosynnema pretiosum subsp. pretiosum ATCC 31280 [J]. Biotechnology Journal , 2017 , 12 ( 11 ): 1700484 . DOI: 10.1002/biot.201700484 http://dx.doi.org/10.1002/biot.201700484 .
RISDIAN C , MOZEF T , WINK J . Biosynthesis of Polyketides in Streptomyces [J]. 2019 , 7 ( 5 ): 124 . DOI: 10.3390/microorganisms7050124 http://dx.doi.org/10.3390/microorganisms7050124 .
LIM Y P , GO M K , YEW W S . Exploiting the Biosynthetic Potential of Type Ⅲ Polyketide Synthases [J]. MOLECULES , 2016 , 21 ( 6 ): 806 . DOI: 10.3390/molecules21060806 http://dx.doi.org/10.3390/molecules21060806 .
RINALDI L , PENNACCHIO S , MUSELLA V , et al . Helminth control in kennels: is the combination of milbemycin oxime and praziquantel a right choice? [J]. Parasites & Vectors , 2015 , 8 ( 1 ): 30 . DOI: 10.1186/s13071-015-0647-2 http://dx.doi.org/10.1186/s13071-015-0647-2 .
ZHANG Y , HE H , LIU H , et al . Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis [J]. Microbial Cell Factories , 2016 , 15 ( 1 ): 152 . DOI: 10.1186/s12934-016-0552-1 http://dx.doi.org/10.1186/s12934-016-0552-1 .
GARNEAU-TSODIKOVA S , LABBY K J . Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives [J]. MedChemComm , 2016 , 7 ( 1 ): 11 - 27 . DOI: 10.1039/c5md00344j http://dx.doi.org/10.1039/c5md00344j .
MARTÍN J F , LIRAS P . Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces [J]. Current Opinion in Microbiology , 2010 , 13 ( 3 ): 263 - 273 . DOI: 10.1016/j.mib.2010.02.008 http://dx.doi.org/10.1016/j.mib.2010.02.008 .
朱琛琛 . 春雷霉素生物合成调控及高产菌株改造 [D]. 上海 : 上海交通大学 , 2016 .
刘士文 , 潘广平 . 井冈霉素防治水稻纹枯病田间试验总结 [J]. 现代化农业 , 2018 , ( 10 ): 11 - 12 .
WANG M , JIN X , ZHOU Y , et al . Research progress of insect neuropeptide allatostatins and their analogues [J]. Chinese Journal of Pesticide Science , 2019 , 21 ( 3 ): 255 - 272 . DOI: 10.16801/j.issn.1008-7303.2019.0052 http://dx.doi.org/10.16801/j.issn.1008-7303.2019.0052 .
BOMGARDNER M M . Spider venom: An insecticide whose time has come? [J]. C&EN Global Enterprise , 2017 , 95 ( 11 ): 30 - 31 . DOI: 10.1021/cen-09511-bus3 http://dx.doi.org/10.1021/cen-09511-bus3 .
ZHANG Y M , YE D X , LIU Y , et al . Peptides, new tools for plant protection in eco-agriculture [J]. Advanced Agrochem , 2023 , 2 ( 1 ): 58 - 78 . DOI: 10.1016/j.aac.2023.01.003 http://dx.doi.org/10.1016/j.aac.2023.01.003 .
ZHOU Y L , LI X L , ZHANG Y M , et al . A novel bee-friendly peptidomimetic insecticide: Synthesis, aphicidal activity and 3D-QSAR study of insect kinin analogs at Phe2 modification [J]. Pest Management Science , 2022 , 78 ( 7 ): 2952 - 2963 . DOI: 10.1002/ps.6920 http://dx.doi.org/10.1002/ps.6920 .
于清 , 黄宏坤 , 黄文坤 , 等 . 天然产物防治农作物病害的作用机理及应用 [J/OL]. 天然产物研究与开发 ,( 2024-11-08 ). http://kns.cnki.net/kcms/detail/51.1335.Q.20241108.1121.004.html http://kns.cnki.net/kcms/detail/51.1335.Q.20241108.1121.004.html .
王季季 , 邓子新 , 陈文青 . 多氧霉素及其生物合成的研究进展 [J]. 微生物学通报 , 2016 , 43 ( 1 ): 205 - 210 . DOI: 10.13344/j.microbiol.china.150275 http://dx.doi.org/10.13344/j.microbiol.china.150275 .
ZHANG B , GAO H , WANG G , et al . Guvermectin, a novel plant growth regulator, can promote the growth and high temperature tolerance of maize [J]. Front Plant Sci , 2022 , 13 : 1025634 . DOI: 10.3389/fpls.2022.1025634 http://dx.doi.org/10.3389/fpls.2022.1025634 .
YANG C , LIU C , LI S , et al . The Transcription Factors WRKY41 and WRKY53 Mediate Early Flowering Induced by the Novel Plant Growth Regulator Guvermectin in Arabidopsis thaliana [J]. Int J Mol Sci , 2023 , 24 ( 9 ): 8424 . DOI: 10.3390/ijms24098424 http://dx.doi.org/10.3390/ijms24098424 .
HANNIGAN G D , PRIHODA D , PALICKA A , et al . A deep learning genome-mining strategy for biosynthetic gene cluster prediction [J]. Nucleic Acids Research , 2019 , 47 ( 18 ): e110 . DOI: 10.1093/nar/gkz654 http://dx.doi.org/10.1093/nar/gkz654 .
WANG X , NING X , ZHAO Q , et al . Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase [J]. Biotechnology Journal , 2017 , 12 ( 1 ): 1700268 . DOI: 10.1002/biot.201700321 http://dx.doi.org/10.1002/biot.201700321 .
SONG C , LUAN J , CUI Q , et al . Enhanced Heterologous Spinosad Production from a 79-kb Synthetic Multioperon Assembly [J]. ACS Synthetic Biology , 2019 , 8 ( 1 ): 137 - 147 . DOI: 10.1021/acssynbio.8b00402 http://dx.doi.org/10.1021/acssynbio.8b00402 .
WANG W , LI X , WANG J , et al . An engineered strong promoter for streptomycetes [J]. Appl Environ Microbiol , 2013 , 79 ( 14 ): 4484 - 4492 . DOI: 10.1128/AEM.00985-13 http://dx.doi.org/10.1128/AEM.00985-13 .
LI S , WANG J , LI X , et al . Genome-wide identification and evaluation of constitutive promoters in streptomycetes [J]. Microbial Cell Factories , 2015 , 14 ( 1 ): 172 . DOI: 10.1186/s12934-015-0351-0 http://dx.doi.org/10.1186/s12934-015-0351-0 .
LUO Y , ZHANG L , BARTON K W , et al . Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus [J]. ACS Synthetic Biology , 2015 , 4 ( 9 ): 1001 - 1010 . DOI: 10.1021/acssynbio.5b00016 http://dx.doi.org/10.1021/acssynbio.5b00016 .
CUI L , CUI A , LI Q , et al . Molecular Evolution of an Aminotransferase Based on Substrate-Enzyme Binding Energy Analysis for Efficient Valienamine Synthesis [J]. ACS Catalysis , 2022 , 12 ( 21 ): 13703 - 13714 . DOI: 10.1021/acscatal.2c03784 http://dx.doi.org/10.1021/acscatal.2c03784 .
STUTZMAN-ENGWALL K , CONLON S , FEDECHKO R , et al . Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis [J]. Metabolic Engineering , 2005 , 7 ( 1 ): 27 - 37 . DOI: 10.1016/j.ymben.2004.07.003 http://dx.doi.org/10.1016/j.ymben.2004.07.003 .
WANG H , LIANG J , YUE Q , et al . Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity [J]. Microbial Cell Factories , 2021 , 20 ( 1 ): 86 . DOI: 10.1186/s12934-021-01578-3 http://dx.doi.org/10.1186/s12934-021-01578-3 .
WANG Z , BAGDE S R , ZAVALA G , et al . De Novo Design and Implementation of a Tandem Acyl Carrier Protein Domain in a Type I Modular Polyketide Synthase [J]. ACS Chemical Biology , 2018 , 13 ( 11 ): 3072 - 3077 . DOI: 10.1021/acschembio.8b00896 http://dx.doi.org/10.1021/acschembio.8b00896 .
LI L , ZHENG G , CHEN J , et al . Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes [J]. Metabolic Engineering , 2017 , 40 : 80 - 92 . DOI: 10.1016/j.ymben.2017.01.004 http://dx.doi.org/10.1016/j.ymben.2017.01.004 .
LI H , GAO W , CUI Y , et al . Remarkable enhancement of bleomycin production through precise amplification of its biosynthetic gene cluster in Streptomyces verticillus [J]. Science China Life Sciences , 2022 , 65 ( 6 ): 1248 - 1256 . DOI: 10.1007/s11427-021-1998-8 http://dx.doi.org/10.1007/s11427-021-1998-8 .
MURAKAMI T , BURIAN J , YANAI K , et al . A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor [J]. Proceedings of the National Academy of Sciences , 2011 , 108 ( 38 ): 16020 - 16025 . DOI: 10.1073/pnas.1108124108 http://dx.doi.org/10.1073/pnas.1108124108 .
NAH H J , WOO M W , CHOI S S , et al . Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system [J]. Microbial Cell Factories , 2015 , 14 ( 1 ): 140 . DOI: 10.1186/s12934-015-0325-2 http://dx.doi.org/10.1186/s12934-015-0325-2 .
WANG X , ZHENG W , ZHOU H , et al . Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria [J]. Nucleic Acids Research , 2022 , 50 ( 3 ): e15 . DOI: 10.1093/nar/gkab1076 http://dx.doi.org/10.1093/nar/gkab1076 .
KOUPRINA N , KIM J H , LARIONOV V . Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast [J]. Current Protocols , 2021 , 1 ( 8 ): e207 . DOI: 10.1002/cpz1.207 http://dx.doi.org/10.1002/cpz1.207 .
JIANG W , ZHAO X , GABRIELI T , et al . Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters [J]. Nature Communications , 2015 , 6 ( 1 ): 8101 . DOI: 10.1038/ncomms9101 http://dx.doi.org/10.1038/ncomms9101 .
WANG H , LI Z , JIA R , et al . ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes [J]. Nucleic Acids Res , 2018 , 46 ( 5 ): 2697 . DOI: 10.1093/nar/gkx1296 http://dx.doi.org/10.1093/nar/gkx1296 .
ENGHIAD B , HUANG C , GUO F , et al . Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination [J]. Nature Communications , 2021 , 12 ( 1 ): 1171 . DOI: 10.1038/s41467-021-21275-4 http://dx.doi.org/10.1038/s41467-021-21275-4 .
LIANG M , LIU L , XU F , et al . Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach [J]. Nucleic Acids Res , 2022 , 50 ( 6 ): 3581 - 3592 . DOI: 10.1093/nar/gkac181 http://dx.doi.org/10.1093/nar/gkac181 .
KEATINGE-CLAY A T . Stereocontrol within polyketide assembly lines [J]. Natural Product Reports , 2016 , 33 ( 2 ): 141 - 149 . DOI: 10.1039/c5np00092k http://dx.doi.org/10.1039/c5np00092k .
COGAN D P , ZHANG K , LI X , et al . Mapping the catalytic conformations of an assembly-line polyketide synthase module [J]. Science , 2021 , 374 ( 6568 ): 729 - 734 . DOI: 10.1126/science.abi8358 http://dx.doi.org/10.1126/science.abi8358 .
ZHOU Y , TAO W , QI Z , et al . Structural and Mechanistic Insights into Chain Release of the Polyene PKS Thioesterase Domain [J]. ACS Catalysis , 2022 , 12 ( 1 ): 762 - 776 . DOI: 10.1021/acscatal.1c04991 http://dx.doi.org/10.1021/acscatal.1c04991 .
ZHAI G , ZHU Y , SUN G , et al . Insights into azalomycin F assembly-line contribute to evolution-guided polyketide synthase engineering and identification of intermodular recognition [J]. Nature Communications , 2023 , 14 ( 1 ): 612 . DOI: 10.1038/s41467-023-36213-9 http://dx.doi.org/10.1038/s41467-023-36213-9 .
MAI Z P , ZHANG B , PANG Z X , et al . Insight into the role of a trans-AT polyketide synthase in the biosynthesis of lankacidin-type natural products [J]. Nature Synthesis , 2024 , 3 ( 10 ): 1255 - 1265 . DOI: 10.1038/s44160-024-00599-1 http://dx.doi.org/10.1038/s44160-024-00599-1 .
HETRICK K J , VAN DER DONK W A . Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era [J]. Current Opinion in Chemical Biology , 2017 , 38 : 36 - 44 . DOI: 10.1016/j.cbpa.2017.02.005 http://dx.doi.org/10.1016/j.cbpa.2017.02.005 .
PAYNE J A E , SCHOPPET M , HANSEN M H , et al . Diversity of nature’s assembly lines - recent discoveries in non-ribosomal peptide synthesis [J]. Molecular BioSystems , 2017 , 13 ( 1 ): 9 - 22 . DOI: 10.1039/c6mb00675b http://dx.doi.org/10.1039/c6mb00675b .
MANDAKH A , NIRAULA N P , KIM E P , et al . Identification and characterization of a pantothenate kinase (PanK-sp) from streptomyces peucetius ATCC 27952 [J]. JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY , 2010 , 20 ( 12 ): 1689 - 1695 . DOI: 10.4014/jmb.1007.07058 http://dx.doi.org/10.4014/jmb.1007.07058 .
YU Z , LV H , WU Y , et al . Enhancement of FK520 production in Streptomyces hygroscopicus by combining traditional mutagenesis with metabolic engineering [J]. Applied Microbiology and Biotechnology , 2019 , 103 ( 23 ): 9593 - 9606 . DOI: 10.1007/s00253-019-10192-8 http://dx.doi.org/10.1007/s00253-019-10192-8 .
ZABALA D , BRAÑA A F , FLÓREZ A B , et al . Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus [J]. Metabolic Engineering , 2013 , 20 : 187 - 197 . DOI: 10.1016/j.ymben.2013.10.002 http://dx.doi.org/10.1016/j.ymben.2013.10.002 .
TAO H , ZHANG Y , DENG Z , et al . Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes [J]. Biotechnology Journal , 2019 , 14 ( 1 ): 1700769 . DOI: 10.1002/biot.201700769 http://dx.doi.org/10.1002/biot.201700769 .
ZABALA D , BRAÑA A F , SALAS J A , et al . Increasing antibiotic production yields by favoring the biosynthesis of precursor metabolites glucose-1-phosphate and/or malonyl-CoA in Streptomyces producer strains [J]. The Journal of Antibiotics , 2016 , 69 ( 3 ): 179 - 182 . DOI: 10.1038/ja.2015.104 http://dx.doi.org/10.1038/ja.2015.104 .
TIAN J , YANG G , GU Y , et al . Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces [J]. Nucleic Acids Research , 2020 , 48 ( 14 ): 8188 - 8202 . DOI: 10.1093/nar/gkaa602 http://dx.doi.org/10.1093/nar/gkaa602 .
WANG W , LI S , LI Z , et al . Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces [J]. Nature Biotechnology , 2020 , 38 ( 1 ): 76 - 83 . DOI: 10.1038/s41587-019-0389-3 http://dx.doi.org/10.1038/s41587-019-0389-3 .
LI J , MU X , DONG W , et al . A non-carboxylative route for the efficient synthesis of central metabolite malonyl-CoA and its derived products [J]. Nature Catalysis , 2024 , 7 ( 4 ): 361 - 374 . DOI: 10.1038/S41929-023-01103-2 http://dx.doi.org/10.1038/S41929-023-01103-2 .
TAN Z , CLOMBURG J M , CHEONG S , et al . A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones [J]. Nature Catalysis , 2020 , 3 ( 7 ): 593 - 603 . DOI: 10.1038/s41929-020-0471-8 http://dx.doi.org/10.1038/s41929-020-0471-8 .
WANG W , LI X , LI Y , et al . A genetic biosensor for identification of transcriptional repressors of target promoters [J]. Scientific Reports , 2015 , 5 ( 1 ): 15887 . DOI: 10.1038/srep15887 http://dx.doi.org/10.1038/srep15887 .
ROMERO-RODRÍGUEZ A , ROBLEDO-CASADOS I , SÁNCHEZ S . An overview on transcriptional regulators in Streptomyces [J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms , 2015 , 1849 ( 8 ): 1017 - 1039 . DOI: 10.1016/j.bbagrm.2015.06.007 http://dx.doi.org/10.1016/j.bbagrm.2015.06.007 .
KIM H U , CHARUSANTI P , LEE S Y , et al . Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites [J]. Natural Product Reports , 2016 , 33 ( 8 ): 933 - 941 . DOI: 10.1039/c6np00019c http://dx.doi.org/10.1039/c6np00019c .
YIN S , WANG W , WANG X , et al . Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus [J]. Microbial Cell Factories , 2015 , 14 ( 1 ): 46 . DOI: 10.1186/s12934-015-0231-7 http://dx.doi.org/10.1186/s12934-015-0231-7 .
YUAN P H , ZHOU R C , CHEN X , et al . DepR1, a TetR Family Transcriptional Regulator, Positively Regulates Daptomycin Production in an Industrial Producer, Streptomyces roseosporus SW0702 [J]. Applied and Environmental Microbiology , 2016 , 82 ( 6 ): 1898 - 1905 . DOI: 10.1128/AEM.03002-15 http://dx.doi.org/10.1128/AEM.03002-15 .
FU Y , DONG Y Q , SHEN J L , et al . A meet-up of acetyl phosphate and c-di-GMP modulates BldD activity for development and antibiotic production [J]. Nucleic Acids Research , 2023 , 51 ( 13 ): 6870 - 6882 . DOI: 10.1093/nar/gkad494 http://dx.doi.org/10.1093/nar/gkad494 .
YU P , LIU S P , BU Q T , et al . WblAch, a Pivotal Activator of Natamycin Biosynthesis and Morphological Differentiation in Streptomyces chattanoogensis L10, Is Positively Regulated by AdpAch [J]. Applied and Environmental Microbiology , 2014 , 80 ( 22 ): 6879 - 6887 . DOI: 10.1128/AEM.01849-14 http://dx.doi.org/10.1128/AEM.01849-14 .
ZOU J , MAO Y , HOU B , et al . DeoR regulates lincomycin production in Streptomyces lincolnensis [J]. World Journal of Microbiology and Biotechnology , 2023 , 39 ( 12 ): 332 . DOI: 10.1007/s11274-023-03788-w http://dx.doi.org/10.1007/s11274-023-03788-w .
YE L , ZHANG Y , LI S , et al . Transcriptome-guided identification of a four-component system, SbrH1-R, that modulates milbemycin biosynthesis by influencing gene cluster expression, precursor supply, and antibiotic efflux [J]. Synthetic and Systems Biotechnology , 2022 , 7 ( 2 ): 705 - 717 . DOI: 10.1016/j.synbio.2022.02.003 http://dx.doi.org/10.1016/j.synbio.2022.02.003 .
AKHTAR M K , JONES P R . Cofactor Engineering for Enhancing the Flux of Metabolic Pathways [J]. Frontiers in Bioengineering and Biotechnology , 2014 , 2 : 30 . DOI: 10.3389/fbioe.2014.00030 http://dx.doi.org/10.3389/fbioe.2014.00030 .
WANG M , CHEN B , FANG Y , et al . Cofactor engineering for more efficient production of chemicals and biofuels [J]. Biotechnology Advances , 2017 , 35 ( 8 ): 1032 - 1039 . DOI: 10.1016/j.biotechadv.2017.09.008 http://dx.doi.org/10.1016/j.biotechadv.2017.09.008 .
DANG L , LIU J , WANG C , et al . Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model [J]. Journal of Industrial Microbiology and Biotechnology , 2017 , 44 ( 2 ): 259 - 270 . DOI: 10.1007/s10295-016-1880-1 http://dx.doi.org/10.1007/s10295-016-1880-1 .
DOI S , KOMATSU M , IKEDA H . Modifications to central carbon metabolism in an engineered Streptomyces host to enhance secondary metabolite production [J]. Journal of Bioscience and Bioengineering , 2020 , 130 ( 6 ): 563 - 570 . DOI: 10.1016/j.jbiosc.2020.08.006 http://dx.doi.org/10.1016/j.jbiosc.2020.08.006 .
LI X , CHEN J , ANDERSEN J M , et al . Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in Saccharopolyspora erythraea [J]. ACS Synthetic Biology , 2020 , 9 ( 3 ): 655 - 670 . DOI: 10.1021/acssynbio.9b00528 http://dx.doi.org/10.1021/acssynbio.9b00528 .
BU Q T , YU P , WANG J , et al . Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches [J]. Microbial Cell Factories , 2019 , 18 ( 1 ): 16 . DOI: 10.1186/s12934-019-1055-7 http://dx.doi.org/10.1186/s12934-019-1055-7 .
CHEN R , GAO J , YU W , et al . Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast [J]. Nature Chemical Biology , 2022 , 18 ( 5 ): 520 - 529 . DOI: 10.1038/S41589-022-01014-6 http://dx.doi.org/10.1038/S41589-022-01014-6 .
CHEN L Q , CHEUNG L S , FENG L , et al . Transport of Sugars [J]. Annual Review of Biochemistry , 2015 , 84 ( 1 ): 865 - 894 . DOI: 10.1146/annurev-biochem-060614-033904 http://dx.doi.org/10.1146/annurev-biochem-060614-033904 .
KUANYSHEV N , DEEWAN A , JAGTAP S S , et al . Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously [J]. Biotechnology Journal , 2021 , 16 ( 11 ): 2100238 . DOI: 10.1002/biot.202100238 http://dx.doi.org/10.1002/biot.202100238 .
JIN P , LI S , ZHANG Y , et al . Mining and fine-tuning sugar uptake system for titer improvement of milbemycins in Streptomyces bingchenggensis [J]. Synthetic and Systems Biotechnology , 2020 , 5 ( 3 ): 214 - 221 . DOI: 10.1016/j.synbio.2020.07.001 http://dx.doi.org/10.1016/j.synbio.2020.07.001 .
ZHOU Z , SUN N , WU S , et al . Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces [J]. BMC Genomics , 2016 , 17 ( 7 ): 510 . DOI: 10.1186/s12864-016-2899-4 http://dx.doi.org/10.1186/s12864-016-2899-4 .
LI M , CHEN Z , ZHANG X , et al . Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis [J]. Bioresource Technology , 2010 , 101 ( 23 ): 9228 - 9235 . DOI: 10.1016/j.biortech.2010.06.132 http://dx.doi.org/10.1016/j.biortech.2010.06.132 .
BU Q T , LI Y P , XIE H , et al . Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes [J]. Metabolic Engineering , 2021 , 67 : 198 - 215 . DOI: 10.1016/j.ymben.2021.06.003 http://dx.doi.org/10.1016/j.ymben.2021.06.003 .
MUKHOPADHYAY A . Tolerance engineering in bacteria for the production of advanced biofuels and chemicals [J]. Trends in Microbiology , 2015 , 23 ( 8 ): 498 - 508 . DOI: 10.1016/j.tim.2015.04.008 http://dx.doi.org/10.1016/j.tim.2015.04.008 .
NASERI G , KOFFAS M A G . Application of combinatorial optimization strategies in synthetic biology [J]. Nature Communications , 2020 , 11 ( 1 ): 2446 . DOI: 10.1038/s41467-020-16175-y http://dx.doi.org/10.1038/s41467-020-16175-y .
SHAN Y , GUO D , GU Q , et al . Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains [J]. Applied Microbiology and Biotechnology , 2020 , 104 ( 2 ): 817 - 831 . DOI: 10.1007/s00253-019-10131-7 http://dx.doi.org/10.1007/s00253-019-10131-7 .
宗工理 , 陈曦 , 张振 , 等 . ABC转运蛋白SgnA/B促进纳他霉素胞外转运与高产 [J]. 生物工程学报 , 2022 , 38 ( 07 ): 2534 - 2548 . DOI: 10.13345/j.cjb.220051 http://dx.doi.org/10.13345/j.cjb.220051 .
WANG X , WEI J , XIAO Y , et al . Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum [J]. Applied Microbiology and Biotechnology , 2021 , 105 ( 2 ): 695 - 706 . DOI: 10.1007/s00253-020-11044-6 http://dx.doi.org/10.1007/s00253-020-11044-6 .
CHU L , LI S , DONG Z , et al . Mining and engineering exporters for titer improvement of macrolide biopesticides in Streptomyces [J]. Microbial Biotechnology , 2022 , 15 ( 4 ): 1120 - 1132 . DOI: 10.1111/1751-7915.13883 http://dx.doi.org/10.1111/1751-7915.13883 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构