
浏览全部资源
扫码关注微信
1.中国科学院 上海有机化学研究所 金属有机化学全国重点实验室,新基石科学实验室,上海 200232
2.浙江大学 化学系,浙江 杭州 310058
3.华东师范大学 化学与分子工程学院 石油化工分子转化与反应工程全国重点实验室,上海 200062
[ "游书力,中国科学院上海有机所研究员、中国科学院院士。目前担任JACS等期刊副主编、Chem等二十余种期刊编委或国际咨询委员会、国际均相催化会议组委会成员,中国化学会副秘书长、有机化学学科委员会和手性化学专业委员会副主任。主要从事金属有机化学、均相催化和手性合成化学研究。发表SCI论文400余篇。论文累计他引2.9万余次,H-index为101。E-mail: slyou@sioc.ac.cn" ]
收稿日期:2025-04-24,
修回日期:2025-06-01,
纸质出版日期:2025-06-25
移动端阅览
苟博博,沈文杰,顾庆等.过渡金属催化的不对称碳氢键官能团化反应[J].新兴科学和技术趋势,2025,4(2):97-116.
GOU Bobo,SHEN Wenjie,GU Qing,et al.Transition-Metal Catalyzed Asymmetric C-H Functionalization Reactions[J].Emerging Science and Technology,2025,4(2):97-116.
苟博博,沈文杰,顾庆等.过渡金属催化的不对称碳氢键官能团化反应[J].新兴科学和技术趋势,2025,4(2):97-116. DOI: 10.12405/j.issn.2097-1486.2025.02.001.
GOU Bobo,SHEN Wenjie,GU Qing,et al.Transition-Metal Catalyzed Asymmetric C-H Functionalization Reactions[J].Emerging Science and Technology,2025,4(2):97-116. DOI: 10.12405/j.issn.2097-1486.2025.02.001.
手性化合物在自然界中无处不在,其重要性也越来越被大家认识,因而不对称合成作为合成手性化合物最有效的方法一直是合成化学中的研究热点。近年来,过渡金属催化的不对称碳氢键官能团化反应发展极为迅速。该类反应可以从分子中惰性的碳氢键出发,无需对反应底物进行预官能团化,为手性分子的构筑提供了一种简洁且高效的方法。本文主要围绕钯、铑、铱和钴催化的不对称碳氢键官能团化反应展开,简要介绍了其不同的催化模式以及反应的发展,并对该领域目前存在的局限性和未来研究方向进行了总结和展望。
Chiral compounds are ubiquitous in nature, and their importance is increasingly recognized. Therefore, asymmetric synthesis, as one of the most effective methods for synthesizing chiral compounds, has become a major research focus in synthetic chemistry. In recent years, transition metal-catalyzed asymmetric C—H bond functionalization reactions have been developed rapidly. These reactions can start from the inert C—H bond in the molecule without the need of pre-functionalization of the substrates, which provides a concise and efficient method for the construction of chiral molecules. This review mainly focuses on the asymmetric C—H bond functionalization reactions catalyzed by palladium, rhodium, iridium and cobalt, and describes their catalytic modes briefly as well as the development of the reactions. Finally, the limitations of previous works and perspectives on this cutting-edge area are also described.
林国强 , 陈耀全 , 陈新滋 , 等 . 手性合成: 不对称反应及其应用 [M]. 北京 : 科学出版社 , 2000 .
GIRI R , SHI B F , ENGLE K M , et al . Transition metal-catalyzed C—H activation reactions: diastereoselectivity and enantioselectivity [J]. Chem Soc Rev , 2009 , 38 ( 11 ): 3242 - 3272 . DOI: 10.1039/B816707A http://dx.doi.org/10.1039/B816707A .
NEWTON C G , WANG S G , OLIVEIRA C C , et al . Catalytic Enantioselective Transformations Involving C—H Bond Cleavage by Transition-Metal Complexes [J]. Chem Rev , 2017 , 117 ( 13 ): 8908 - 8976 . DOI: 10.1021/acs.chemrev.6b00692 http://dx.doi.org/10.1021/acs.chemrev.6b00692 .
LAM N Y S , WU K , YU J Q . Advancing the Logic of Chemical Synthesis: C-H Activation as Strategic and Tactical Disconnections for C—C Bond Construction [J]. Angew Chem Int Ed , 2021 , 60 ( 29 ): 15767 - 15790 . DOI: 10.1002/anie.202011901 http://dx.doi.org/10.1002/anie.202011901 .
ZHAN B B , JIN L , SHI B F . Palladium-catalyzed enantioselective C—H functionalization via C—H palladation [J]. Trends Chem , 2022 , 4 ( 3 ): 220 - 235 . DOI: 10.1016/j.trechm.2021.12.005 http://dx.doi.org/10.1016/j.trechm.2021.12.005 .
LIU C X , YIN S Y , ZHAO F , et al . Rhodium-Catalyzed Asymmetric C—H Functionalization Reactions [J]. Chem Rev , 2023 , 123 ( 16 ): 10079 - 10134 . DOI: 10.1021/acs.chemrev.3c00149 http://dx.doi.org/10.1021/acs.chemrev.3c00149 .
WOŹNIAK Ł , TAN J F , NGUYEN Q H , et al . Catalytic Enantioselective Functionalizations of C—H Bonds by Chiral Iridium Complexes [J]. Chem Rev , 2020 , 120 ( 18 ): 10516 - 10543 . DOI: 10.1021/acs.chemrev.0c00559 http://dx.doi.org/10.1021/acs.chemrev.0c00559 .
LIANG H , WANG J . Enantioselective C—H Bond Functionalization Involving Arene Ruthenium(Ⅱ) Catalysis [J]. Chem Eur J , 2023 , 29 ( 7 ): e202202461 . DOI: 10.1002/chem.202202461 http://dx.doi.org/10.1002/chem.202202461 .
LOUP J , DHAWA U , PESCIAIOLI F , et al . Enantioselective C—H Activation with Earth-Abundant 3d Transition Metals [J] . Angew Chem Int Ed , 2019 , 58 ( 37 ): 12803 - 12818 . DOI: 10.1002/anie.201904214 http://dx.doi.org/10.1002/anie.201904214 .
ALBICKER M R , CRAMER N . Enantioselective Palladium-Catalyzed Direct Arylations at Ambient Temperature: Access to Indanes with Quaternary Stereocenters [J]. Angew Chem Int Ed , 2009 , 48 ( 48 ): 9139 - 9142 . DOI: 10.1002/anie.200905060 http://dx.doi.org/10.1002/anie.200905060 .
NAKANISHI M , KATAYEV D , BESNARD C , et al . Fused Indolines by Palladium-Catalyzed Asymmetric C—C Coupling Involving an Unactivated Methylene Group [J]. Angew Chem Int Ed . 2011 , 50 ( 32 ): 7438 - 7441 . DOI: 10.1002/anie.201102639 http://dx.doi.org/10.1002/anie.201102639 .
GAO D W , YIN Q , GU Q , et al . Enantioselective Synthesis of Planar Chiral Ferrocenes via Pd(0)-Catalyzed Intramolecular Direct C—H Bond Arylation [J]. J Am Chem Soc , 2014 , 163 ( 13 ): 4841 - 4844 . DOI: 10.1021/ja500444v http://dx.doi.org/10.1021/ja500444v .
DENG R , HUANG Y , MA X , et al . Palladium-Catalyzed Intramolecular Asymmetric C—H Functionalization/Cyclization Reaction of Metallocenes: An Efficient Approach toward the Synthesis of Planar Chiral Metallocene Compounds [J]. J Am Chem Soc , 2014 , 136 ( 12 ): 4472 - 4475 . DOI: 10.1021/ja500699x http://dx.doi.org/10.1021/ja500699x .
YANG L , MELOT R , NEUBURGER M , et al . Palladium(0)-catalyzed asymmetric C(sp 3 )—H arylation using a chiral binol-derived phosphate and an achiral ligand [J]. Chem Sci , 2017 , 8 ( 2 ): 1344 - 1349 . DOI: 10.1039/c6sc04006c http://dx.doi.org/10.1039/c6sc04006c .
JIANG H J , ZHONG X M , LIU Z Y , et al . Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β-C(sp 3 )-H Arylation [J]. Angew Chem Int Ed , 2020 , 59 ( 31 ): 12774 - 12778 . DOI: 10.1002/anie.202004485 http://dx.doi.org/10.1002/anie.202004485 .
SHI B F , MAUGEL N , ZHANG Y H , et al . PdII-Catalyzed Enantioselective Activation of C(sp 2 )-H and C(sp 3 )—H Bonds Using Monoprotected Amino Acids as Chiral Ligands [J]. Angew Chem Int Ed , 2008 , 47 ( 26 ): 4882 - 4886 . DOI: 10.1002/anie.200801030 http://dx.doi.org/10.1002/anie.200801030 .
WASA M , ENGLE K M , LIN D W , et al . Pd(Ⅱ)-Catalyzed Enantioselective C—H Activation of Cyclopropanes [J]. J Am Chem Soc , 2011 , 133 ( 49 ): 19598 - 19601 . DOI: 10.1021/ja207607s http://dx.doi.org/10.1021/ja207607s .
XIAO K J , CHU L , YU J Q . Enantioselective C-H Olefination of α-Hydroxy and α-Amino Phenylacetic Acids by Kinetic Resolution [J]. Angew Chem Int Ed , 2016 , 55 ( 8 ): 2856 - 2860 . DOI: 10.1002/anie.201510808 http://dx.doi.org/10.1002/anie.201510808 .
GAO D W , SHI Y C , GU Q , et al . Enantioselective Synthesis of Planar Chiral Ferrocenes via Palladium-Catalyzed Direct Coupling with Arylboronic Acids [J]. J Am Chem Soc , 2013 , 135 ( 1 ): 86 - 89 . DOI: 10.1021/ja311082u http://dx.doi.org/10.1021/ja311082u .
GAO D W , GU Q , YOU S L . An Enantioselective Oxidative C—H/C—H Cross-Coupling Reaction: Highly Efficient Method To Prepare Planar Chiral Ferrocenes [J]. J Am Chem Soc , 2016 , 138 ( 8 ): 2544 - 2547 . DOI: 10.1021/jacs.6b00127 http://dx.doi.org/10.1021/jacs.6b00127 .
JIN L , YAO Q J , XIE P P , et al . Atroposelective Synthesis of Axially Chiral Styrenes via an Asymmetric C—H Functionalization Strategy [J]. Chem , 2020 , 6 ( 2 ): 497 - 511 . DOI: 10.1016/j.chempr.2019.12.011 http://dx.doi.org/10.1016/j.chempr.2019.12.011 .
PI C , LI Y , CUI X , et al . Redox of ferrocene controlled asymmetric dehydrogenative Heck reaction via palladium-catalyzed dual C—H bond activation [J]. Chem Sci , 2013 , 4 ( 6 ): 2675 - 2679 . DOI: 10.1039/C3SC50577D http://dx.doi.org/10.1039/C3SC50577D .
JAIN P , VERMA P , XIA G , et al . Enantioselective amine α-functionalization via palladium-catalysed C—H arylation of thioamides [J]. Nat Chem , 2017 , 9 ( 2 ): 140 - 144 . DOI: 10.1038/nchem.2619 http://dx.doi.org/10.1038/nchem.2619 .
LUO J , ZHANG T , WANG L , et al . Enantioselective Synthesis of Biaryl Atropisomers by Pd-Catalyzed C—H Olefination using Chiral Spiro Phosphoric Acid Ligands [J]. Angew Chem Int Ed , 2019 , 58 ( 20 ): 6708 - 6712 . DOI: 10.1002/anie.201902126 http://dx.doi.org/10.1002/anie.201902126 .
ZHAN B B , WANG L , LUO J , et al . Synthesis of Axially Chiral Biaryl-2-amines by Pd Ⅱ -Catalyzed Free-Amine-Directed Atroposelective C—H Olefination [J]. Angew Chem Int Ed , 2020 , 59 ( 9 ): 3568 - 3572 . DOI: 10.1002/anie.201915674 http://dx.doi.org/10.1002/anie.201915674 .
YAMAGUCHI K , YAMAGUCHI J , STUDER A , et al . Hindered biaryls by C—H coupling: bisoxazoline-Pd catalysis leading to enantioselective C—H coupling [J]. Chem Sci , 2012 , 3 ( 6 ): 2165 - 2169 . DOI: 10.1039/C2SC20277H http://dx.doi.org/10.1039/C2SC20277H .
CHENG X F , LI Y , SU Y M , et al . Pd(Ⅱ)-Catalyzed Enantioselective C—H Activation/C—O Bond Formation: Synthesis of Chiral Benzofuranones [J]. J Am Chem Soc , 2013 , 135 ( 4 ): 1236 - 1239 . DOI: 10.1021/ja311259x http://dx.doi.org/10.1021/ja311259x .
CHEN G , GONG W , ZHUANG Z , et al . Ligand-accelerated enantioselective methylene C(sp 3 )—H bond activation [J]. Science , 2016 , 353 ( 6303 ): 1023 - 1027 . DOI: 10.1126/science.aaf4434 http://dx.doi.org/10.1126/science.aaf4434 .
WU Q F , SHEN P X , HE J , et al . Formation of -chiral centers by asymmetric β-C(sp 3 )—H arylation, alkenylation, and alkynylation [J]. Science , 2017 , 355 ( 6324 ): 499 - 503 . DOI: 10.1126/science.aal5175 http://dx.doi.org/10.1126/science.aal5175 .
SHEN P X , HU L , SHAO Q , et al . Pd(Ⅱ)-Catalyzed Enantioselective C(sp 3 )—H Arylation of Free Carboxylic Acids [J]. J Am Chem Soc , 2018 , 140 ( 21 ): 6545 - 6549 . DOI: 10.1021/jacs.8b03509 http://dx.doi.org/10.1021/jacs.8b03509 .
ZHANG F L , HONG K , LI T J , et al . Functionalization of C(sp 3 )—H bonds using a transient directing group [J]. Science , 2016 , 351 ( 6270 ): 252 - 256 . DOI: 10.1126/science.aad7893 http://dx.doi.org/10.1126/science.aad7893 .
YAN S B , ZHANG S , DUAN , W L . Palladium-Catalyzed Asymmetric Arylation of C(sp 3 )—H Bonds of Aliphatic Amides: Controlling Enantioselectivity Using Chiral Phosphoric Amides/Acids [J]. Org Lett , 2015 , 17 ( 10 ): 2458 - 2461 . DOI: 10.1021/acs.orglett.5b00968 http://dx.doi.org/10.1021/acs.orglett.5b00968 .
WANG , H , TONG H R , HE G , et al . An Enantioselective Bidentate Auxiliary Directed Palladium-Catalyzed Benzylic C—H Arylation of Amines Using a BINOL Phosphate Ligand [J]. Angew Chem Int Ed , 2016 , 55 ( 49 ): 15387 - 15391 . DOI: 10.1002/anie.201609337 http://dx.doi.org/10.1002/anie.201609337 .
YAN S Y , HAN Y Q , YAO Q J , et al . Palladium(Ⅱ)-Catalyzed Enantioselective Arylation of Unbiased Methylene C(sp 3 )—H Bonds Enabled by a 2-Pyridinylisopropyl Auxiliary and Chiral Phosphoric Acids [J]. Angew Chem Int Ed , 2018 , 57 ( 29 ): 9093 - 9097 . DOI: 10.1002/anie.201804197 http://dx.doi.org/10.1002/anie.201804197 .
SHI H , HERRON A N , SHAO Y , et al . Enantioselective remote meta-C—H arylation and alkylation via a chiral transient mediator [J]. Nature , 2018 , 558 ( 7711 ): 581 - 585 . DOI: 10.1038/s41586-018-0220-1 http://dx.doi.org/10.1038/s41586-018-0220-1 .
HAN Y Q , DING Y , ZHOU T , et al . Pd(Ⅱ)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp 3 )—H Bonds Using 3,3′-Fluorinated-BINOL as a Chiral Ligand [J]. J Am Chem Soc , 2019 , 141 ( 11 ): 4558 - 4563 . DOI: 10.1021/jacs.9b01124 http://dx.doi.org/10.1021/jacs.9b01124 .
DING Y , HAN Y Q , WU L S , et al . Pd(Ⅱ)-Catalyzed Tandem Enantioselective Methylene C(sp 3 )—H Alkenylation—Aza-Wacker Cyclization to Access β-Stereogenic γ-Lactams [J]. Angew Chem Int Ed , 2020 , 59 ( 33 ): 14060 - 14064 . DOI: 10.1002/anie.202004504 http://dx.doi.org/10.1002/anie.202004504 .
LIAO G , LI B , CHEN H M , et al . Pd-Catalyzed Atroposelective C—H Allylation through β-O Elimination: Diverse Synthesis of Axially Chiral Biaryls [J]. Angew Chem Int Ed , 2018 , 57 ( 52 ): 17151 - 17155 . DOI: 10.1002/anie.201811256 http://dx.doi.org/10.1002/anie.201811256 .
LIAO G , CHEN H M , XIA Y N , et al . Synthesis of Chiral Aldehyde Catalysts by Pd-Catalyzed Atroposelective C—H Naphthylation [J]. Angew Chem Int Ed , 2019 , 58 ( 33 ): 11464 - 11468 . DOI: 10.1002/anie.201906700 http://dx.doi.org/10.1002/anie.201906700 .
HYSTER T K , KNÖRR L , WARD T R , et al . Biotinylated Rh(Ⅲ) Complexes in Engineered Streptavidin for Accelerated Asymmetric C—H Activation [J]. Science , 2012 , 338 ( 6106 ): 500 - 503 . DOI: 10.1126/science.1226132 http://dx.doi.org/10.1126/science.1226132 .
YE B , CRAMER N . Chiral Cyclopentadienyl Ligands as Stereocontrolling Element in Asymmetric C—H Functionalization [J]. Science , 2012 , 338 ( 6106 ): 504 - 506 . DOI: 10.1126/science.1226938 http://dx.doi.org/10.1126/science.1226938 .
YE B , CRAMER N . A Tunable Class of Chiral Cp Ligands for Enantioselective Rhodium(Ⅲ)-Catalyzed C—H Allylations of Benzamides [J]. J Am Chem Soc , 2013 , 135 ( 2 ): 636 - 639 . DOI: 10.1021/ja311956k http://dx.doi.org/10.1021/ja311956k .
ZHENG J , CUI W J , ZHENG C , et al . Synthesis and Application of Chiral Spiro Cp Ligands in Rhodium-Catalyzed Asymmetric Oxidative Coupling of Biaryl Compounds with Alkenes [J]. J Am Chem Soc , 2016 , 138 ( 16 ): 5242 - 5245 . DOI: 10.1021/jacs.6b02302 http://dx.doi.org/10.1021/jacs.6b02302 .
PAN C , YIN S Y , WANG S B , et al . Oxygen-Linked Cyclopentadienyl Rhodium(Ⅲ) Complexes-Catalyzed Asymmetric C—H Arylation of Benzo[h]quinolines with 1-Diazonaphthoquinones [J]. Angew Chem Int Ed , 2021 , 60 ( 28 ): 15510 - 15516 . DOI: 10.1002/anie.202103638 http://dx.doi.org/10.1002/anie.202103638 .
JIA Z J , MERTEN C , GONTLA R , et al . General Enantioselective C—H Activation with Efficiently Tunable Cyclopentadienyl Ligands [J]. Angew Chem Int Ed , 2017 , 56 ( 9 ): 2429 - 2434 . DOI: 10.1002/anie.201611981 http://dx.doi.org/10.1002/anie.201611981 .
TRIFONOVA E A , ANKUDINOV N M , MIKHAYLOV A A , et al . A Planar-Chiral Rhodium(Ⅲ) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones [J]. Angew Chem Int Ed , 2018 , 57 ( 26 ): 7714 - 7718 . DOI: 10.1002/anie.201801703 http://dx.doi.org/10.1002/anie.201801703 .
LIANG H , VASAMSETTY L , LI T , et al . A New Class of C2-Symmetric Chiral Cyclopentadienyl Ligand Derived from Ferrocene Scaffold: Design, Synthesis and Application [J]. Chem Eur J , 2020 , 26 ( 64 ): 14546 - 14550 . DOI: 10.1002/chem.202001814 http://dx.doi.org/10.1002/chem.202001814 .
LI G , YAN X , JIANG J , et al . Chiral Bicyclo[2.2.2]octane-Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric C—H Activation [J]. Angew Chem Int Ed , 2020 , 59 ( 50 ): 22436 - 22440 . DOI: 10.1002/anie.202010489 http://dx.doi.org/10.1002/anie.202010489 .
GUO W , JIANG J , WANG J . [2.2]Benzoindenophane-Based Chiral Indenyl Ligands: Design, Synthesis, and Applications in Asymmetric C-H Activation [J]. Angew Chem Int Ed , 2024 , 63 ( 32 ): e202400279 . DOI: 10.1002/anie.202400279 http://dx.doi.org/10.1002/anie.202400279 .
FARR C M B , KAZEROUNI A M , PARK B , et al . Designing a Planar Chiral Rhodium Indenyl Catalyst for Regio- and Enantioselective Allylic C—H Amidation [J]. J Am Chem Soc , 2020 , 142 ( 32 ): 13996 - 14004 . DOI: 10.1021/jacs.0c07305 http://dx.doi.org/10.1021/jacs.0c07305 .
WANG Q , ZHANG W W , SONG H , et al . Rhodium-Catalyzed Atroposelective Oxidative C—H/C—H Cross-Coupling Reaction of 1-Aryl Isoquinoline Derivatives with Electron-Rich Heteroarenes [J]. J Am Chem Soc 2020 , 142 ( 37 ): 15678 - 15685 . DOI: 10.1021/jacs.0c08205 http://dx.doi.org/10.1021/jacs.0c08205 .
ZHANG W W , WANG Q , ZHANG S Z , et al . (SCp)Rhodium-Catalyzed Asymmetric Satoh—Miura Reaction for Building-up Axial Chirality: Counteranion-Directed Switching of Reaction Pathways [J]. Angew Chem Int Ed , 2023 , 62 ( 3 ): e202214460 . DOI: 10.1002/anie.202214460 http://dx.doi.org/10.1002/anie.202214460 .
GOU B B , SHEN W J , GAO Y J , et al . Rhodium-Catalyzed Atroposelective Synthesis of Axially Chiral 1-Aryl Isoquinolines via De Novo Isoquinoline Formation [J]. Angew Chem Int Ed , 2025 , 64 ( 24 ): e202502131 . DOI: 10.1002/anie.202502131 http://dx.doi.org/10.1002/anie.202502131 .
WANG Q , ZHANG W W , ZHENG C , et al . Enantioselective Synthesis of Azoniahelicenes by Rh-Catalyzed C—H Annulation with Alkynes [J]. J Am Chem Soc , 2021 , 143 ( 1 ): 114 - 120 . DOI: 10.1021/jacs.0c11735 http://dx.doi.org/10.1021/jacs.0c11735 .
TIAN M , BAI D , ZHENG G , et al . Rh(Ⅲ)-Catalyzed Asymmetric Synthesis of Axially Chiral Biindolyls by Merging C—H Activation and Nucleophilic Cyclization [J]. J Am Chem Soc , 2019 , 141 ( 24 ): 9527 - 9532 . DOI: 10.1021/jacs.9b04711 http://dx.doi.org/10.1021/jacs.9b04711 .
WANG F , QI Z , ZHAO Y , et al . Rhodium(Ⅲ)-Catalyzed Atroposelective Synthesis of Biaryls by C—H Activation and Intermolecular Coupling with Sterically Hindered Alkynes [J]. Angew Chem Int Ed , 2020 , 59 ( 32 ): 13288 - 13294 . DOI: 10.1002/anie.202002208 http://dx.doi.org/10.1002/anie.202002208 .
WANG F , JING J , ZHAO Y , et al . Rhodium-Catalyzed C-H Activation-Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions [J]. Angew Chem Int Ed , 2021 , 60 ( 30 ): 16628 - 16633 . DOI: 10.1002/anie.202105093 http://dx.doi.org/10.1002/anie.202105093 .
MI R , DING Z , YU S , et al . O-Allylhydroxyamine: A Bifunctional Olefin for Construction of Axially and Centrally Chiral Amino Alcohols via Asymmetric Carboamidation [J]. J Am Chem Soc , 2023 , 145 ( 14 ): 8150 - 8162 . DOI: 10.1021/jacs.3c01162 http://dx.doi.org/10.1021/jacs.3c01162 .
SATAKE S , KURIHARA T , NISHIKAWA K , et al . Pentamethylcyclopentadienyl rhodium(Ⅲ)—chiral disulfonate hybrid catalysis for enantioselective C—H bond functionalization [J]. Nat Catal , 2018 , 1 ( 8 ): 585 - 591 . DOI: 10.1038/s41929-018-0106-5 http://dx.doi.org/10.1038/s41929-018-0106-5 .
THALJI R K , ELLMAN J A , BERGMAN R G . Highly Efficient and Enantioselective Cyclization of Aromatic Imines via Directed C—H Bond Activation [J]. J Am Chem Soc , 2004 , 126 ( 23 ): 7192 - 7193 . DOI: 10.1021/ja0394986 http://dx.doi.org/10.1021/ja0394986 .
KIM J H , GREßIES S , BOULTADAKIS-ARAPINIS , et al . Rh(Ⅰ)/NHC*-Catalyzed Site- and Enantioselective Functionalization of C(sp 3 )—H Bonds Toward Chiral Triarylmethanes [J]. ACS Catal , 2016 , 6 ( 11 ): 7652 - 7656 . DOI: 10.1021/acscatal.6b02392 http://dx.doi.org/10.1021/acscatal.6b02392 .
GREßIES S , KLAUCK F J R , KIM J H , et al . Ligand-Enabled Enantioselective C—H Activation of Tetrahydroquinolines and Saturated Aza-Heterocycles by RhI [J]. Angew Chem Int Ed , 2018 , 57 ( 31 ): 9950 - 9954 . DOI: 10.1002/anie.201805680 http://dx.doi.org/10.1002/anie.201805680 .
LIU C X , ZHAO F , FENG Z , et al . Kinetic resolution of planar chiral metallocenes using Rh-catalysed enantioselective C—H arylation [J]. Nat Synth , 2023 , 2 ( 1 ): 49 - 57 . DOI: 10.1038/s44160-022-00177-3 http://dx.doi.org/10.1038/s44160-022-00177-3 .
LIU C X , XIE P P , ZHAO F , et al . Explicit Mechanism of Rh(Ⅰ)-Catalyzed Asymmetric C—H Arylation and Facile Synthesis of Planar Chiral Ferrocenophanes [J]. J Am Chem Soc , 2023 , 145 ( 8 ): 4765 - 4773 . DOI: 10.1021/jacs.2c13542 http://dx.doi.org/10.1021/jacs.2c13542 .
CAI Z J , LIU C X , WANG Q , et al . Thioketone-directed rhodium(Ⅰ) catalyzed enantioselective C—H bond arylation of ferrocenes [J]. Nat Commun , 2019 , 10 ( 1 ): 4168 . DOI: 10.1038/s41467-019-12181-x http://dx.doi.org/10.1038/s41467-019-12181-x .
WANG Q , CAI Z J , LIU C X , et al . Rhodium-Catalyzed Atroposelective C—H Arylation: Efficient Synthesis of Axially Chiral Heterobiaryls [J]. J Am Chem Soc , 2019 , 141 ( 24 ): 9504 - 9510 . DOI: 10.1021/jacs.9b03862 http://dx.doi.org/10.1021/jacs.9b03862 .
SEVOV C S , HARTWIG J F. , Iridium-Catalyzed Intermolecular Asymmetric Hydroheteroarylation of Bicycloalkenes [J]. J Am Chem Soc , 2013 , 135 ( 6 ): 2116 - 2119 . DOI: 10.1021/ja312360c http://dx.doi.org/10.1021/ja312360c .
JANG Y S , DIECKMANN M , CRAMER N . Cooperative Effects between Chiral Cp x —Iridium(Ⅲ) Catalysts and Chiral Carboxylic Acids in Enantioselective C—H Amidations of Phosphine Oxides [J]. Angew Chem Int Ed , 2017 , 56 ( 47 ): 15088 - 15092 . DOI: 10.1002/anie.201708440 http://dx.doi.org/10.1002/anie.201708440 .
SU B , ZHOU T G , XU P L , et al . Enantioselective Borylation of Aromatic C—H Bonds with Chiral Dinitrogen Ligands [J]. Angew Chem Int Ed , 2017 , 56 ( 25 ): 7205 - 7208 . DOI: 10.1002/anie.201702628 http://dx.doi.org/10.1002/anie.201702628 .
ZOU X , ZHAO H , LI Y , et al . Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp 2 )—H Borylation of Diarylmethylamines [J]. J Am Chem Soc , 2019 , 141 ( 13 ): 5334 - 5342 . DOI: 10.1021/jacs.8b13756 http://dx.doi.org/10.1021/jacs.8b13756 .
SHI Y , GAO Q , XU S . Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp 3 )—H Borylation of Cyclopropanes [J]. J Am Chem Soc , 2019 , 141 ( 27 ): 10599 - 10604 . DOI: 10.1021/jacs.9b04549 http://dx.doi.org/10.1021/jacs.9b04549 .
ZOU X , LI Y , KE Z , et al . Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective Dual C—H Borylation of Ferrocenes: Reaction Development and Mechanistic Insights [J]. ACS Catal , 2022 , 12 ( 3 ): 1830 - 1840 . DOI: 10.1021/acscatal.1c05299 http://dx.doi.org/10.1021/acscatal.1c05299 .
ZHAO H , CHEN L , XIA C , et al . Enantioselective C—H Borylation for the Synthesis of Axially Chiral N-Aryl phthalimides [J]. Asian J Org Chem , 2023 , 12 ( 2 ): e202200695 . DOI: 10.1002/ajoc.202200695 http://dx.doi.org/10.1002/ajoc.202200695 .
ZHENG Y , ZHENG C , GU Q , et al . Enantioselective C—H functionalization reactions enabled by cobalt catalysis [J]. Chem Catal , 2022 , 2 ( 11 ): 2965 - 2985 . DOI: 10.1016/j.checat.2022.08.020 http://dx.doi.org/10.1016/j.checat.2022.08.020 .
YAO Q J , SHI B F . Cobalt(Ⅲ)-Catalyzed Enantioselective C—H Functionalization: Ligand Innovation and Reaction Development [J]. Acc Chem Res , 2025 , 58 ( 6 ): 971 - 990 . DOI: 10.1021/acs.accounts.5c00013 http://dx.doi.org/10.1021/acs.accounts.5c00013 .
YANG J , YOSHIKAI N . Cobalt-Catalyzed Enantioselective Intramolecular Hydroacylation of Ketones and Olefins [J]. J Am Chem Soc , 2014 , 136 ( 48 ): 16748 - 16751 . DOI: 10.1021/ja509919x http://dx.doi.org/10.1021/ja509919x .
YANG J , RÉRAT A , LIM Y J , et al . Cobalt-Catalyzed Enantio- and Diastereoselective Intramolecular Hydroacylation of Trisubstituted Alkenes [J]. Angew Chem Int Ed , 2017 , 56 ( 9 ): 2449 - 2453 . DOI: 10.1002/anie.201611518 http://dx.doi.org/10.1002/anie.201611518 .
KIM D K , RIEDEL J , KIM R S , et al . Cobalt Catalysis for Enantioselective Cyclobutanone Construction [J]. J Am Chem Soc , 2017 , 139 ( 30 ): 10208 - 10211 . DOI: 10.1021/jacs.7b05327 http://dx.doi.org/10.1021/jacs.7b05327 .
JACOB N , ZAID Y , OLIVEIRA J C A , et al . Cobalt-Catalyzed Enantioselective C—H Arylation of Indoles [J]. J Am Chem Soc , 2022 , 144 ( 2 ): 798 - 806 . DOI: 10.1021/jacs.1c09889 http://dx.doi.org/10.1021/jacs.1c09889 .
PESCIAIOLI F , DHAWA U , OLIVEIRA J C A , et al . Enantioselective Cobalt(Ⅲ)-Catalyzed C—H Activation Enabled by Chiral Carboxylic Acid Cooperation [J]. Angew Chem Int Ed , 2018 , 57 ( 47 ): 15425 - 15429 . DOI: 10.1002/anie.201808595 http://dx.doi.org/10.1002/anie.201808595 .
KURIHARA T , KOJIMA M , YOSHINO T , et al . Cp*CoⅢ/Chiral Carboxylic Acid-Catalyzed Enantioselective 1,4-Addition Reactions of Indoles to Maleimides [J]. Asian J Org Chem , 2020 , 9 ( 3 ): 368 - 371 . DOI: 10.1002/ajoc.201900565 http://dx.doi.org/10.1002/ajoc.201900565 .
LIU Y H , XIE P P , LIU L , et al . Cp*Co(Ⅲ)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C—H Activation [J]. J Am Chem Soc , 2021 , 143 ( 45 ): 19112 - 19120 . DOI: 10.1021/jacs.1c08562 http://dx.doi.org/10.1021/jacs.1c08562 .
LIU Y H , LI P X , YAO Q J , et al . Cp*Co(Ⅲ)/MPAA-Catalyzed Enantioselective Amidation of Ferrocenes Directed by Thioamides under Mild Conditions [J]. Org Lett , 2019 , 21 ( 6 ): 1895 - 1899 . DOI: 10.1021/acs.orglett.9b00511 http://dx.doi.org/10.1021/acs.orglett.9b00511 .
OZOLS K , JANG Y S , CRAMER N . Chiral Cyclopentadienyl Cobalt(Ⅲ) Complexes Enable Highly Enantioselective 3d-Metal-Catalyzed C—H Functionalizations [J]. J Am Chem Soc , 2019 , 141 ( 14 ): 5675 - 5680 . DOI: 10.1021/jacs.9b02569 http://dx.doi.org/10.1021/jacs.9b02569 .
OZOLS K , ONODERA S , WOŹNIAK Ł , et al . Cobalt(Ⅲ)-Catalyzed Enantioselective Intermolecular Carboamination by C—H Functionalization [J]. Angew Chem Int Ed , 2021 , 60 ( 2 ): 655 - 659 . DOI: 10.1002/anie.202011140 http://dx.doi.org/10.1002/anie.202011140 .
ZHENG Y , ZHANG W Y , GU Q , et al . Cobalt(Ⅲ)-catalyzed asymmetric ring-opening of 7-oxabenzonorbornadienes via indole C—H functionalization [J]. Nat Commun , 2023 , 14 ( 1 ): 1094 . DOI: 10.1038/s41467-023-36723-6 http://dx.doi.org/10.1038/s41467-023-36723-6 .
ZHENG Y , XIE P P , ZHENG C , et al . Cobalt-Catalyzed Asymmetric Synthesis of Planar Chiral Ferrocene Derivatives via C(sp 2 )—C(sp 3 ) Bond Formation [J]. CCS Chem , 2025 , 7 ( 4 ): 1202 - 1215 . DOI: 10.31635/ccschem.024.202404231 http://dx.doi.org/10.31635/ccschem.024.202404231 .
YAO Q J , CHEN J H , SONG H , et al . Cobalt/Salox-Catalyzed Enantioselective C—H Functionalization of Arylphosphinamides [J]. Angew Chem Int Ed , 2022 , 61 ( 25 ): e202202892 . DOI: 10.1002/anie.202202892 http://dx.doi.org/10.1002/anie.202202892 .
WOŹNIAK Ł , CRAMER N . Enantioselective CH Bond Functionalizations by 3d Transition-Metal Catalysts [J]. Trends Chem , 2019 , 1 ( 5 ): 471 - 484 . DOI: 10.1016/j.trechm.2019.03.013 http://dx.doi.org/10.1016/j.trechm.2019.03.013 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621