
浏览全部资源
扫码关注微信
武汉大学 药学院,湖北 武汉 430071
[ "洪学传,男,武汉大学药学院二级教授,武汉大学药学院副院长,教育部长江特聘教授,英国皇家化学会会士,湖北省楚天学者特聘教授,武汉大学珞珈特聘教授。中国药学会第九和第十届药物化学专业委员会委员,中国药学会第一届智能药物专业委员会委员,中国药理学会分析药理学专业委员会常务理事。荣获2021年度西藏自治区科学技术奖一等奖;2022年度中华中医药学会科学技术奖二等奖。已在国内、国际核心化学期刊上发表相关论文包括Chem. Rev., Nat. Mater., Nat. Commun., Angew. Chem. Int. Ed., Chem. Sci., J. Med. Chem., ESI高被引12篇,热点1篇。主持与参与国家基金委重大项目、国家自然科学基金项目、科技部重大研究计划、科技部重大专项病毒专项、国家留学基金委创新型人才国际合作培养项目-医药交叉学科复合型人才培养项目、湖北省重点研发计划项目,湖北省自然科学基金创新团队和湖北省重点产业创新团队等。Email:xhy78@whu.edu.cn" ]
收稿日期:2024-12-27,
修回日期:2025-02-05,
纸质出版日期:2025-06-25
移动端阅览
罗秋思,肖玉玲,洪学传.mRNA疗法:开启现代医学治疗的新纪元[J].新兴科学和技术趋势,2025,4(2):117-128.
LUO Qiusi,XIAO Yuling,HONG Xuechuan.mRNA therapy: a new era in modern medical therapy[J].Emerging Science and Technology,2025,4(2):117-128.
罗秋思,肖玉玲,洪学传.mRNA疗法:开启现代医学治疗的新纪元[J].新兴科学和技术趋势,2025,4(2):117-128. DOI: 10.12405/j.issn.2097-1486.2025.02.002.
LUO Qiusi,XIAO Yuling,HONG Xuechuan.mRNA therapy: a new era in modern medical therapy[J].Emerging Science and Technology,2025,4(2):117-128. DOI: 10.12405/j.issn.2097-1486.2025.02.002.
mRNA疗法在当代医学领域展现出巨大的应用潜力。然而,由于mRNA分子的不稳定性和递送效率低下,该疗法依然面临诸多挑战。自新型冠状病毒mRNA疫苗成功研发并大规模应用于全球抗疫以来,mRNA疗法凭借其独特的技术优势和应用灵活性,已经成为应对多种疾病的一项开创性治疗手段。为了全面了解mRNA疗法的研究进展,本文首先介绍mRNA疗法的基本概念和关键技术;其次,总结mRNA疗法在传染病预防、癌症治疗、蛋白质替代治疗和基因编辑等方面的研究成果;最后,分析mRNA疗法面临的挑战,旨在为后续相关研究与临床应用提供全面而深入的理论参考与实践指导。
mRNA therapy has demonstrated significant potential in the contemporary medical field. However, it is still meeting many challenges due to the instability of mRNA molecules and low delivery efficiency. Since the successful development and widespread application of the novel coronavirus mRNA vaccine, mRNA therapy has emerged as one of the most groundbreaking treatments for various diseases, leveraging its unique technical advantages and application flexibility. To comprehensively understand the progress in mRNA therapy, this paper first introduces the fundamental concepts and key technologies. It then summarizes the research achievements of mRNA therapy in infectious disease prevention, cancer treatment, protein replacement therapy, and gene editing. Finally, it analyzes the obstacles encountered by mRNA therapy, aiming to provide comprehensive theoretical references and practical guidelines for future research and clinical applications.
BRENNER S , JACOB F , MESELSON M . An unstable intermediate carrying information from genes to ribosomes for protein synthesis [J]. Nature , 1961 , 13 ( 190 ): 576 - 581 . DOI: 10.1038/190576a0 http://dx.doi.org/10.1038/190576a0 .
HOU X , ZAKS T , LANGER R , et al . Lipid nanoparticles for mRNA delivery [J]. Nat Rev Mater , 2021 , 6 ( 12 ): 1078 - 1094 . DOI: 10.1038/s41578-021-00358-0 http://dx.doi.org/10.1038/s41578-021-00358-0 .
HUANG X , KONG N , ZHANG X , et al . The landscape of mRNA nanomedicine [J]. Nat Med , 2022 , 28 ( 11 ): 2273 - 2287 . DOI: 10.1038/s41591-022-02061-1 http://dx.doi.org/10.1038/s41591-022-02061-1 .
ZONG Y , LIN Y , WEI T , et al . Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy [J]. Adv Mater , 2023 , 35 ( 51 ): e2303261 . DOI: 10.1002/adma.202303261 http://dx.doi.org/10.1002/adma.202303261 .
DIMITRIADIS G J . Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes [J]. Nature , 1978 , 274 ( 5674 ): 923 - 924 . DOI: 10.1038/274923a0 http://dx.doi.org/10.1038/274923a0 .
WOLFF J A , MALONE R W , WILLIAMS P , et al . Direct gene transfer into mouse muscle in vivo [J]. Science , 1990 , 247 ( 4949 Pt 1 ): 1465 - 1468 . DOI: 10.1126/science.1690918 http://dx.doi.org/10.1126/science.1690918 .
MARTINON F , KRISHNAN S , LENZEN G , et al . Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA [J]. Eur J Immunol , 1993 , 23 ( 7 ): 1719 - 1722 . DOI: 10.1002/eji.1830230749 http://dx.doi.org/10.1002/eji.1830230749 .
CONRY R M , LOBUGLIO A F , WRIGHT M , et al . Characterization of a messenger RNA polynucleotide vaccine vector [J]. Cancer Res , 1995 , 55 ( 7 ): 1397 - 1400 .
WEIDE B , PASCOLO S , SCHEEL B , et al . Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients [J]. J Immunother , 2009 , 32 ( 5 ): 498 - 507 . DOI: 10.1097/CJI.0b013e3181a00068 http://dx.doi.org/10.1097/CJI.0b013e3181a00068 .
BADEN L R , E L SAHLY H M , ESSINK B , et al . Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J]. N Engl J Med , 2021 , 384 ( 5 ): 403 - 416 . DOI: 10.1056/NEJMoa2035389 http://dx.doi.org/10.1056/NEJMoa2035389 .
GU J , XU Z , LIU Q , et al . Building a better silver bullet: current status and perspectives of non-viral vectors for mRNA vaccines [J]. Cancer Res Treat , 2024 , 56 ( 3 ): 774 - 784 . DOI: 10.4143/crt.2023.1177 http://dx.doi.org/10.4143/crt.2023.1177 .
HUANG X , KONG N , ZHANG X , et al . The landscape of mRNA nanomedicine [J]. Nat Med , 2022 , 28 ( 11 ): 2273 - 2287 . DOI: 10.1038/s41591-022-02061-1 http://dx.doi.org/10.1038/s41591-022-02061-1 .
CHAUDHARY N , WEISSMAN D , WHITEHEAD K A . mRNA vaccines for infectious diseases: principles, delivery and clinical translation [J]. Nat Rev Drug Discov , 2021 , 20 ( 11 ): 817 - 838 . DOI: 10.1038/s41573-021-00321-2 http://dx.doi.org/10.1038/s41573-021-00321-2 .
ALEXOPOULOU L , HOLT A C , MEDZHITOV R , et al . Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 [J]. Nature , 2001 , 413 ( 6857 ): 732 - 738 . DOI: 10.1038/35099560 http://dx.doi.org/10.1038/35099560 .
KARIKÓ K , NI H , CAPODICI J , et al . mRNA is an endogenous ligand for Toll-like receptor 3 [J]. J Biol Chem , 2004 , 279 ( 13 ): 12542 - 12550 . DOI: 10.1074/jbc.M310175200 http://dx.doi.org/10.1074/jbc.M310175200 .
MU X , HUR S . Immunogenicity of In Vitro-Transcribed RNA [J]. Acc Chem Res , 2021 , 54 ( 21 ): 4012 - 4023 . DOI: 10.1021/acs.accounts.1c00521 http://dx.doi.org/10.1021/acs.accounts.1c00521 .
SCHLAKE T , THESS A , FOTIN-MLECZEK M , et al . Developing mRNA-vaccine technologies [J]. RNA Biol , 2012 , 9 ( 11 ): 1319 - 1330 . DOI: 10.4161/rna.22269 http://dx.doi.org/10.4161/rna.22269 .
VERBEKE R , LENTACKER I , DE SMEDT S C , et al . Three decades of messenger RNA vaccine development [J]. Nano Today , 2019 , 28 : 100766 . DOI: 10.1016/j.nantod.2019.100766 http://dx.doi.org/10.1016/j.nantod.2019.100766 .
VIERBUCHEN T , STEIN K , HEINE H . RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease [J]. Allergy , 2019 , 74 ( 2 ): 223 - 235 . DOI: 10.1111/all.13680 http://dx.doi.org/10.1111/all.13680 .
KAWAI T , AKIRA S . Toll‐like receptor and RIG-1-like receptor signaling [J]. Ann N Y Acad Sci , 2008 , 1143 ( 1 ): 1 - 20 . DOI: 10.1196/annals.1443.020 http://dx.doi.org/10.1196/annals.1443.020 .
KARIKÓ K , MURAMATSU H , WELSH F A , et al . Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability [J]. Mol Ther , 2008 , 16 ( 11 ): 1833 - 1840 . DOI: 10.1038/mt.2008.200 http://dx.doi.org/10.1038/mt.2008.200 .
WANG Y , ZHANG L , XU Z , et al . mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma [J]. Mol Ther , 2018 , 26 ( 2 ): 420 - 434 . DOI: 10.1016/j.ymthe.2017.11.009 http://dx.doi.org/10.1016/j.ymthe.2017.11.009 .
NANCE K D , MEIER J L . Modifications in an emergency: the role of N 1-methylpseudouridine in COVID-19 vaccines [J]. ACS Cent Sci , 2021 , 7 ( 5 ): 748 - 756 . DOI: 10.1021/acscentsci.1c00197 http://dx.doi.org/10.1021/acscentsci.1c00197 .
KARIKÓ K , MURAMATSU H , LUDWIG J , et al . Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA [J]. Nucleic Acids Res , 2011 , 39 ( 21 ): e142 . DOI: 10.1093/nar/gkr695 http://dx.doi.org/10.1093/nar/gkr695 .
CHEN C Y A , SHYU A B . Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway [J]. Mol Cell Biol , 2003 , 23 ( 14 ): 4805 - 4813 . DOI: 10.1128/MCB.23.14.4805-4813.2003 http://dx.doi.org/10.1128/MCB.23.14.4805-4813.2003 .
HOLTKAMP S , KREITER S , SELMI A , et al . Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells [J]. Blood , 2006 , 108 ( 13 ): 4009 - 4017 . DOI: 10.1182/blood-2006-04-015024 http://dx.doi.org/10.1182/blood-2006-04-015024 .
BEDNAREK S , MADAN V , SIKORSKI P J , et al . mRNAs biotinylated within the 5′ cap and protected against decapping: new tools to capture RNA-protein complexes [J]. Philos Trans R Soc Lond B Biol Sci , 2018 , 373 ( 1762 ): 20180167 . DOI: 10.1098/rstb.2018.0167 http://dx.doi.org/10.1098/rstb.2018.0167 .
AUGUST A , ATTARWALA H Z , HIMANSU S , et al . A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus [J]. Nat Med , 2021 , 27 ( 12 ): 2224 - 2233 . DOI: 10.1038/s41591-021-01573-6 http://dx.doi.org/10.1038/s41591-021-01573-6 .
MCKINLAY C J , BENNER N L , HAABETH O A , et al . Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters [J]. Proc Natl Acad Sci U S A , 2018 , 115 ( 26 ): E5859 - E5866 . DOI: 10.1073/pnas.1805358115 http://dx.doi.org/10.1073/pnas.1805358115 .
CAPASSO PALMIERO U , KACZMAREK J C , FENTON O S , et al . Poly (β-amino ester)-co-poly (caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo [J]. Adv Healthc Mater , 2018 , 7 ( 14 ): 1800249 . DOI: 10.1002/adhm.201800249 http://dx.doi.org/10.1002/adhm.201800249 .
WANG Y , TANG J , YANG Y , et al . Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hard-to-Transfect Cells [J]. Angew Chem Int Ed Engl , 2020 , 132 ( 7 ): 2717 - 2721 . DOI: 10.1002/anie.201914264 http://dx.doi.org/10.1002/anie.201914264 .
KONG N , ZHANG R , WU G , et al . Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer [J]. Proc Natl Acad Sci U S A , 2022 , 119 ( 7 ): e2112696119 . DOI: 10.1073/pnas.2112696119 http://dx.doi.org/10.1073/pnas.2112696119 .
HOU X , ZAKS T , LANGER R , et al . Lipid nanoparticles for mRNA delivery [J]. Nat Rev Mater , 2021 , 6 ( 12 ): 1078 - 1094 . DOI: 10.1038/s41578-021-00358-0 http://dx.doi.org/10.1038/s41578-021-00358-0 .
JEONG M , LEE Y , PARK J , et al . Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications [J]. Adv Drug Deliv Rev , 2023 , 200 : 114990 . DOI: 10.1016/j.addr.2023.114990 http://dx.doi.org/10.1016/j.addr.2023.114990
AKINC A , MAIER M A , MANOHARAN M , et al . The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J]. Nat Nanotechnol , 2019 , 14 ( 12 ): 1084 - 1087 . DOI: 10.1038/s41565-019-0591-y http://dx.doi.org/10.1038/s41565-019-0591-y .
ALBERTSEN C H , KULKARNI J A , WITZIGMANN D , et al . The role of lipid components in lipid nanoparticles for vaccines and gene therapy [J]. Adv Drug Deliv Rev , 2022 , 188 : 114416 . DOI: 10.1016/j.addr.2022.114416 http://dx.doi.org/10.1016/j.addr.2022.114416 .
CHATTERJEE S , KON E , SHARMA P , et al . Endosomal escape: A bottleneck for LNP-mediated therapeutics [J]. Proc Natl Acad Sci U S A , 2024 , 121 ( 11 ): e2307800120 . DOI: 10.1073/pnas.2307800120 http://dx.doi.org/10.1073/pnas.2307800120 .
KON E , ELIA U , PEER D . Principles for designing an optimal mRNA lipid nanoparticle vaccine [J]. Curr Opin Biotechnol , 2022 , 73 : 329 - 336 . DOI: 10.1016/j.copbio.2021.09.016 http://dx.doi.org/10.1016/j.copbio.2021.09.016 .
YANG W , MIXICH L , BOONSTRA E , et al . Polymer‐based mRNA delivery strategies for advanced therapies [J]. Adv Healthc Mater , 2023 , 12 ( 15 ): 2202688 . DOI: 10.1002/adhm.202202688 http://dx.doi.org/10.1002/adhm.202202688 .
TARACH P , JANASZEWSKA A . Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy [J]. Int J Mol Sci , 2021 , 22 ( 6 ): 2912 . DOI: 10.3390/ijms22062912 http://dx.doi.org/10.3390/ijms22062912 .
O’BRIEN K , BREYNE K , UGHETTO S , et al . RNA delivery by extracellular vesicles in mammalian cells and its applications [J]. Nat Rev Mol Cell Biol , 2020 , 21 ( 10 ): 585 - 606 . DOI: 10.1038/s41580-020-0251-y http://dx.doi.org/10.1038/s41580-020-0251-y .
VALADI H , EKSTRÖM K , BOSSIOS A , et al . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol , 2007 , 9 ( 6 ): 654 - 659 . DOI: 10.1038/ncb1596 http://dx.doi.org/10.1038/ncb1596 .
SKOG J , WÜRDINGER T , VAN RIJN S , et al . Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers [J]. Nat Cell Biol , 2008 , 10 ( 12 ): 1470 - 1476 . DOI: 10.1038/ncb1800 http://dx.doi.org/10.1038/ncb1800 .
MAUGERI M , NAWAZ M , PAPADIMITRIOU A , et al . Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells [J]. Nat Commun , 2019 , 10 ( 1 ): 4333 . 2019; 10 ( 1 ): 4333 . DOI: 10.1038/s41467-019-12275-6 http://dx.doi.org/10.1038/s41467-019-12275-6 .
SAMSA M M , DUPUY L C , BEARD C W , et al . Self-amplifying RNA vaccines for Venezuelan equine encephalitis virus induce robust protective immunogenicity in mice [J]. Mol Ther , 2019 , 27 ( 4 ): 850 - 865 . DOI: 10.1016/j.ymthe.2018.12.013 http://dx.doi.org/10.1016/j.ymthe.2018.12.013 .
O’HAGAN D T , OTT G S , DE GREGORIO E , et al . The mechanism of action of MF59-an innately attractive adjuvant formulation [J]. Vaccine , 2012 , 30 ( 29 ): 4341 - 4348 . DOI: 10.1016/j.vaccine.2011.09.061 http://dx.doi.org/10.1016/j.vaccine.2011.09.061 .
GÓMEZ-AGUADO I , RODRÍGUEZ-CASTEJÓN J , VICENTE-PASCUAL M , et al . Nanomedicines to deliver mRNA: state of the art and future perspectives [J]. Nanomaterials , 2020 , 10 ( 2 ): 364 . DOI: 10.3390/nano10020364 http://dx.doi.org/10.3390/nano10020364 .
HUANG Q , JI K , TIAN S , et al . A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2 [J]. Nat Commun , 2021 , 12 ( 1 ): 776 . DOI: 10.1038/s41467-021-21037-2 http://dx.doi.org/10.1038/s41467-021-21037-2 .
SZABÓ G T , MAHINY A J , VLATKOVIC I . COVID-19 mRNA vaccines: Platforms and current developments [J]. Mol Ther , 2022 , 30 ( 5 ): 1850 - 1868 . DOI: 10.1016/j.ymthe.2022.02.016 http://dx.doi.org/10.1016/j.ymthe.2022.02.016 .
LAURINI G S , MONTANARO N , BROCCOLI M , et al . Real-life safety profile of mRNA vaccines for COVID-19: an analysis of VAERS database [J]. Vaccine , 2023 , 41 ( 18 ): 2879 - 2886 . DOI: 10.1016/j.vaccine.2023.03.054 http://dx.doi.org/10.1016/j.vaccine.2023.03.054 .
IAVARONE C , O’HAGAN D T , YU D , et al . Mechanism of action of mRNA-based vaccines [J]. Expert Rev Vaccines , 2017 , 16 ( 9 ): 871 - 881 . DOI: 10.1080/14760584.2017.1355245 http://dx.doi.org/10.1080/14760584.2017.1355245 .
KEEHNER J , HORTON L E , PFEFFER M A , et al . SARS-CoV-2 infection after vaccination in health care workers in California [J]. N Engl J Med , 2021 , 384 ( 18 ): 1774 - 1775 . DOI: 10.1056/NEJMc2101927 http://dx.doi.org/10.1056/NEJMc2101927 .
XU K , LEI W , KANG B , et al . A novel mRNA vaccine, SYS6006, against SARS-CoV-2 [J]. Front Immunol , 2023 , 13 : 1051576 . DOI: 10.3389/fimmu.2022.1051576 http://dx.doi.org/10.3389/fimmu.2022.1051576 .
LIANG F , LINDGREN G , LIN A , et al . Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques [J]. Mol Ther , 2017 , 25 ( 12 ): 2635 - 2647 . DOI: 10.1016/j.ymthe.2017.08.006 http://dx.doi.org/10.1016/j.ymthe.2017.08.006 .
FREYN A W , DA SILVA J R , ROSADO V C , et al . A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice [J]. Mol Ther , 2020 , 28 ( 7 ): 1569 - 1584 . DOI: 10.1016/j.ymthe.2020.04.018 http://dx.doi.org/10.1016/j.ymthe.2020.04.018 .
BAHL K , SENN J J , YUZHAKOV O , et al . Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses [J]. Mol Ther , 2017 , 25 ( 6 ): 1316 - 1327 . DOI: 10.1016/j.ymthe.2017.03.035 http://dx.doi.org/10.1016/j.ymthe.2017.03.035 .
FELDMAN R A , FUHR R , SMOLENOV I , et al . mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials [J]. Vaccine , 2019 , 37 ( 25 ): 3326 - 3334 . 10.1016/j.vaccine.2019.04.074 http://dx.doi.org/10.1016/j.vaccine.2019.04.074 .
DYBUL M , ATTOYE T , BAPTISTE S , et al . The case for an HIV cure and how to get there [J]. Lancet HIV , 2021 , 8 ( 1 ): e51 - e58 . DOI: 10.1016/S2352-3018(20)30232-0 http://dx.doi.org/10.1016/S2352-3018(20)30232-0 .
SAIED A R A . mRNA vaccines and clinical research in Africa-From hope to reality [J]. Int J Surg , 2022 , 105 : 106833 . DOI: 10.1016/j.ijsu.2022.106833 http://dx.doi.org/10.1016/j.ijsu.2022.106833 .
BRISSE M , VRBA S M , KIRK N , et al . Emerging concepts and technologies in vaccine development [J]. Front Immunol , 2020 , 11 : 583077 . DOI: 10.3389/fimmu.2020.583077 http://dx.doi.org/10.3389/fimmu.2020.583077 .
LIU C , SHI Q , HUANG X , et al . mRNA-based cancer therapeutics [J]. Nat Rev Cancer , 2023 , 23 ( 8 ): 526 - 543 . DOI: 10.1038/s41568-023-00586-2 http://dx.doi.org/10.1038/s41568-023-00586-2 .
BIONTECH S E . BioNTech receives FDA fast track designation for its FixVac candidate BNT 111 in advanced melanoma. GlobeNewswire[EB/OL]. ( 2021-11-19 )[ 2024-12-19 ]. https://investors.biontech.de/news-releases/news-release-details/biontech-receives-fda-fast-track-designation-its-fixvac https://investors.biontech.de/news-releases/news-release-details/biontech-receives-fda-fast-track-designation-its-fixvac .
BLASS E , OTT P A . Advances in the development of personalized neoantigen-based therapeutic cancer vaccines [J]. Nat Rev Clin Oncol , 2021 , 18 ( 4 ): 215 - 229 . DOI: 10.1038/s41571-020-00460-2 http://dx.doi.org/10.1038/s41571-020-00460-2 .
PATEL M R , BAUER T M , JIMENO A , et al . A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab [J]. J Clin Oncol , 2020 , 38 ( 15 ): 3092 . DOI: 10.1200/JCO.2020.38.15_suppl.3092 http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3092 .
REN J , LIU X , FANG C , et al . Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition [J]. Clin Cancer Res , 2017 , 23 ( 9 ): 2255 - 2266 . DOI: 10.1158/1078-0432.CCR-16-1300 http://dx.doi.org/10.1158/1078-0432.CCR-16-1300 .
XIAO Y , CHEN J , ZHOU H , et al . Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy [J]. Nat Commun , 2022 , 13 ( 1 ): 758 . DOI: 10.1038/s41467-022-28279-8 http://dx.doi.org/10.1038/s41467-022-28279-8 .
ROHNER E , YANG R , FOO K S , et al . Unlocking the promise of mRNA therapeutics [J]. Nat Biotechnol , 2022 , 40 ( 11 ): 1586 - 1600 . DOI: 10.1038/s41587-022-01491-z http://dx.doi.org/10.1038/s41587-022-01491-z .
ANTTILA V , SARASTE A , KNUUTI J , et al . Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting [J]. Mol Ther , 2023 , 31 ( 3 ): 866 - 874 . DOI: 10.1016/j.ymthe.2022.11.017 http://dx.doi.org/10.1016/j.ymthe.2022.11.017 .
ZHA W , WANG J , GUO Z , et al . Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles [J]. Int J Pharm , 2023 , 632 : 122565 . DOI: 10.1016/j.ijpharm.2022.122565 http://dx.doi.org/10.1016/j.ijpharm.2022.122565 .
RUSSICK J , DELIGNAT S , MILANOV P , et al . Correction of bleeding in experimental severe hemophilia A by systemic delivery of factor Ⅷ-encoding mRNA [J]. Haematologica , 2019 , 105 ( 4 ): 1129 . DOI: 10.3324/haematol.2018.210583 http://dx.doi.org/10.3324/haematol.2018.210583 .
LEE J H , HAN J P . In vivo LNP-CRISPR Approaches for the Treatment of Hemophilia [J]. Mol Diagn Ther , 2024 , 28 ( 3 ): 239 - 248 . DOI: 10.1007/s40291-024-00705-1 http://dx.doi.org/10.1007/s40291-024-00705-1 .
NAGAHARA A H , WILSON B R , IVASYK I , et al . MR-guided delivery of AAV2-BDNF into the entorhinal cortex of non-human primates [J]. Gene Ther , 2018 , 25 ( 2 ): 104 - 114 . DOI: 10.1038/s41434-018-0010-2 http://dx.doi.org/10.1038/s41434-018-0010-2 .
FUKUSHIMA Y , UCHIDA S , IMAI H , et al . Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle [J]. Biomaterials , 2021 , 270 : 120681 . DOI: 10.1016/j.biomaterials.2021.120681 http://dx.doi.org/10.1016/j.biomaterials.2021.120681 .
KAZEMIAN P , YU S Y , THOMSON S B , et al . Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components [J]. Mol Pharm , 2022 , 19 ( 6 ): 1669 - 1686 . DOI: 10.1021/acs.molpharmaceut.1c00916 http://dx.doi.org/10.1021/acs.molpharmaceut.1c00916 .
XU X , LIU C , WANG Y , et al . Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment [J]. Adv Drug Deliv Rev , 2021 , 176 : 113891 . DOI: 10.1016/j.addr.2021.113891 http://dx.doi.org/10.1016/j.addr.2021.113891 .
BERLING E , NICOLLE R , LAFORÊT P , et al . Gene therapy review: Duchenne muscular dystrophy case study [J]. Rev Neurol (Paris) , 2023 , 179 ( 1-2 ): 90 - 105 . DOI: 10.1016/j.neurol.2022.11.005 http://dx.doi.org/10.1016/j.neurol.2022.11.005 .
PITRONE P , CATTAFI A , MAGNANI F , et al . Spontaneous transverse colon volvulus in a patient with Duchenne muscular dystrophy: An unreported complication [J]. Radiol Case Rep , 2023 , 18 ( 3 ): 1306 - 1310 . DOI: 10.1016/j.radcr.2022.12.062 http://dx.doi.org/10.1016/j.radcr.2022.12.062 .
KENJO E , HOZUMI H , MAKITA Y , et al . Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice [J]. Nat Commun , 2021 , 12 ( 1 ): 7101 . DOI: 10.1038/s41467-021-26714-w http://dx.doi.org/10.1038/s41467-021-26714-w .
MAO X , WANG G , WANG Z , et al . Theranostic Lipid Nanoparticles for Renal Cell Carcinoma [J]. Adv Mater , 2023 : 2306246 . DOI: 10.1002/adma.202306246 http://dx.doi.org/10.1002/adma.202306246 .
DILLIARD S A , SIEGWART D J . Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs [J]. Nat Rev Mater , 2023 , 8 ( 4 ): 282 - 300 . DOI: 10.1038/s41578-022-00529-7 http://dx.doi.org/10.1038/s41578-022-00529-7 .
HERRERA-BARRERA M , RYALS R C , GAUTAM M , et al . Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates [J]. Sci Adv , 2023 , 9 ( 2 ): eadd4623 . DOI: 10.1126/sciadv.add4623 http://dx.doi.org/10.1126/sciadv.add4623 .
XU M , QI Y , LIU G , et al . Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance [J]. ACS nano , 2023 , 17 ( 21 ): 20825 - 20849 . DOI: 10.1021/acsnano.3c05853 http://dx.doi.org/10.1021/acsnano.3c05853 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621