
浏览全部资源
扫码关注微信
1.北京大学 化学与分子工程学院,北京 100864
2.上海交通大学 化学化工学院 超快科学中心,上海 200240
[ "丁蓓,女,现任上海交通大学化学化工学院教授、张江高等研究院超快科学中心超快光生物课题组组长。主要研究领域为生物物理化学,致力于发展超快光谱和二维红外相干光谱研究光酶和光受体蛋白的分子机制。2019―2021年期间受到海外高层次人才计划资助,2020―2025年担任科技部重点研发蛋白质专项青年科学家项目首席。在PNAS,Nat. Commun.,J. Am. Chem. Soc.,Angew. Chem.等杂志发表论文三十余篇。Email:bei.ding@sjtu.edu.cn" ]
[ "樊新元,男,现任北京大学副研究员。国家优秀青年科学基金获得者,Chinese Chemical Letters等学术期刊编委。研究领域化学生物学,长期致力于面向生命体系前沿交叉的化学反应和工具的开发与应用研究,特别是提出并发展了“生物正交光催化”,并以此为基础开发了一系列系统性、独特性和实用性兼具的全新生物正交光催化技术体系,突破了生物大分子时空组学化学解码的技术瓶颈,填补了原代、临床等重要生物样品分子原位解析的空白。近五年在Nat. Catal.,Nat. Chem.,Chem,Nat. Commun.,J. Am. Chem. Soc.,Angew. Chem.等期刊发表通讯作者论文二十余篇。Email:xinyuanfan@pku.edu.cn" ]
收稿日期:2025-03-12,
修回日期:2025-04-17,
纸质出版日期:2025-06-25
移动端阅览
郭福虎,孙志凡,丁蓓等.第一过渡周期金属参与的光催化反应研究进展[J].新兴科学和技术趋势,2025,4(2):129-145.
GUO Fuhu,SUN Zhifan,DING Bei,et al.Research progress of photocatalytic reactions involving first-row transition metals[J].Emerging Science and Technology,2025,4(2):129-145.
郭福虎,孙志凡,丁蓓等.第一过渡周期金属参与的光催化反应研究进展[J].新兴科学和技术趋势,2025,4(2):129-145. DOI: 10.12405/j.issn.2097-1486.2025.02.003.
GUO Fuhu,SUN Zhifan,DING Bei,et al.Research progress of photocatalytic reactions involving first-row transition metals[J].Emerging Science and Technology,2025,4(2):129-145. DOI: 10.12405/j.issn.2097-1486.2025.02.003.
近年来,可见光介导的第一过渡周期金属催化在有机合成中展现出巨大的潜力。与传统的贵金属光催化剂(如铱和钌)相比,第一过渡周期金属(如铁、铜和钴)以其廉价和丰富的特点,正在推动绿色化学的研究。尽管第一过渡周期金属配合物的光激发态寿命比铑和铱光催化剂要短,但可以通过合理设计配体有效地提高其光催化活性。可见光介导的第一过渡周期金属催化主要有两种反应路径:(1)激发态的第一过渡周期金属配合物发生配体-金属电荷转移(LMCT)过程产生自由基活性物种参与反应;(2)激发态的第一过渡周期金属配合物与底物分子之间发生单电子转移(SET)过程产生活性物种参与反应。本文主要概述以第二种反应路径催化有机转化的近五年的研究进展。
In recent years, first-row transition metal (FRTM) photocatalysis has shown great potential in organic synthesis. Compared with traditional noble metal photocatalysts (such as iridium and ruthenium), first-row transition metals (such as iron, copper and cobalt) are driving the research of green chemistry due to their lower costs and higher abundance. Although the photoexcited state lifetime of the first-row transition metal complexes is shorter than that of the photocatalysts of rhodium and iridium, their photocatalytic activity can be effectively improved by rationally designing ligands. There are two main reaction pathways for visible-light mediated first-row transition metal catalysis: (1) the excited state of first-row transition metal complexes undergoes ligand-metal charge transfer (LMCT) producing free radical active species to participate in the reaction; (2) the excited state of first-row transition metal complexes undergoes single electron transfer (SET) between substrate molecules producing active species to participate in the reaction. This article summarizes the research progress of catalyzing organic transformations via the second reaction pathway in the past five years.
CHEUNG K P S , SARKAR S , GEVORGYAN V . Visible light-induced transition metal catalysis [J]. Chem Rev , 2022 , 122 ( 2 ): 1543 - 1625 . DOI: 10.1021/acs.chemrev.1c00403 http://dx.doi.org/10.1021/acs.chemrev.1c00403 .
KANCHERLA R , MURALIRAJAN K , SAGADEVAN A , et al . Visible light-induced excited-state transition-metal catalysis [J]. Trends Chem , 2019 , 1 ( 5 ): 510 - 523 . DOI: 10.1016/j.trechm.2019.03.012 http://dx.doi.org/10.1016/j.trechm.2019.03.012 .
BASLÉ O . Visible-light-induced 3d transition metal-catalysis: a focus on C—H bond functionalization [J]. Curr Opin Green Sust , 2021 , 32 , 100539 . DOI: 10.1016/j.cogsc.2021.100539 http://dx.doi.org/10.1016/j.cogsc.2021.100539 .
ABDERRAZAK Y , BHATTACHARYYA A , REISER O . Visible-light-induced homolysis of earth-abundant metal-substrate complexes: A complementary activation strategy in photoredox catalysis [J]. Angew Chem Int Ed , 2021 , 60 ( 39 ): 21100 - 21115 . DOI: 10.1002/anie.202100270 http://dx.doi.org/10.1002/anie.202100270 .
ARIAS-ROTONDO D M , MCCUSKER J K . The photophysics of photoredox catalysis: a roadmap for catalyst design [J]. Chem Soc Rev , 2016 , 45 ( 21 ): 5803 - 5820 . DOI: 10.1039/c6cs00526h http://dx.doi.org/10.1039/c6cs00526h .
LARSEN C B , WENGER O S . Photoredox catalysis with metal complexes made from earth-abundant elements [J]. Chem Eur J , 2018 , 24 ( 9 ): 2039 - 2058 . DOI: 10.1002/chem.201703602 http://dx.doi.org/10.1002/chem.201703602 .
HOCKIN B M , LI C F , ROBERTSON N , et al . Photoredox catalysts based on earth-abundant metal complexes [J]. Catal Sci Technol , 2019 , 9 ( 4 ): 889 - 915 . DOI: 10.1039/c8cy02336k http://dx.doi.org/10.1039/c8cy02336k .
XI Y M , YI H , LEI A W . Synthetic applications of photoredox catalysis with visible light [J]. Org Biomol Chem , 2013 , 11 ( 15 ): 2387 - 2403 . DOI: 10.1039/c3ob40137e http://dx.doi.org/10.1039/c3ob40137e .
CHAN A Y , GHOSH A , YARRANTON J T , et al . Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis [J]. Science , 2023 , 382 ( 6667 ): 191 - 197 . DOI: 10.1126/science.adj0612 http://dx.doi.org/10.1126/science.adj0612 .
WENGER O S . Photoactive complexes with Earth-abundant metals [J]. J Am Chem Soc , 2018 , 140 ( 42 ): 13522 - 13533 . DOI: 10.1021/jacs.8b08822 http://dx.doi.org/10.1021/jacs.8b08822 .
MCCUSKER J K . Electronic structure in the transition metal block and its implications for light harvesting [J]. Science , 2019 , 363 ( 6426 ): 484 - 488 . DOI: 10.1126/science.aav9104 http://dx.doi.org/10.1126/science.aav9104 .
FÖRSTER C , HEINZE K . Photophysics and photochemistry with Earth-abundant metals - fundamentals and concepts [J]. Chem Soc Rev , 2020 , 49 ( 4 ): 1057 - 1070 . DOI: 10.1039/c9cs00573k http://dx.doi.org/10.1039/c9cs00573k .
HUANG T , DU P G , CHENG X L , et al . Manganese complexes with consecutive Mn(Ⅳ) → Mn(Ⅲ) excitation for versatile photoredox catalysis [J]. J Am Chem Soc , 2024 , 146 ( 35 ): 24515 - 24525 . DOI: 10.1021/jacs.4c07084 http://dx.doi.org/10.1021/jacs.4c07084 .
DIERKS P , VUKADINOVIC Y , BAUER M . Photoactive iron complexes: more sustainable, but still a challenge [J]. Inorg Chem Front , 2022 , 9 ( 2 ): 206 - 220 . DOI: 10.1039/d1qi01112j http://dx.doi.org/10.1039/d1qi01112j .
JAMATIA R , MONDAL A , SRIMANI D . Visible-light-induced manganese-catalyzed reactions: present approach and future prospects [J]. Adv Synth Catal , 2021 , 363 ( 12 ): 2969 - 2995 . DOI: 10.1002/adsc.202100151 http://dx.doi.org/10.1002/adsc.202100151 .
LONG W H , LIAN P C , LI J J , et al . Mn-Catalysed photoredox hydroxytrifluoromethylation of aliphatic alkenes using CFSO 2 Na [J]. Org Biomol Chem , 2020 , 18 ( 33 ): 6483 - 6486 . DOI: 10.1039/d0ob01322f http://dx.doi.org/10.1039/d0ob01322f .
GLASER F , AYDOGAN A , ELIAS B , et al . The great strides of iron photosensitizers for contemporary organic photoredox catalysis: On our way to the holy grail? [J]. Coord Chem Rev , 2024 , 500 : 215522 . DOI: 10.1016/j.ccr.2023.215522 http://dx.doi.org/10.1016/j.ccr.2023.215522 .
DE GROOT L H M , ILIC A , SCHWARZ J , et al . Iron photoredox catalysis-past, present, and future [J]. J Am Chem Soc , 2023 , 145 ( 17 ): 9369 - 9388 . DOI: 10.1021/jacs.3c01000 http://dx.doi.org/10.1021/jacs.3c01000 .
YIN C Z , WANG M , CAI Z X , et al . Visible-light-induced iron group metal catalysis: recent developments in organic synthesis [J]. Synthesis , 2022 , 54 ( 22 ): 4864 - 4882 . DOI: 10.1055/a-1921-0698 http://dx.doi.org/10.1055/a-1921-0698 .
KUMAWAT S , NATTE K . Iron(Ⅱ) triflate as a photocatalyst for trifluoromethylation of functionalized arenes under blue LED light: Access to bioactive compounds [J]. J Catal , 2024 , 434 : 115506 . DOI: 10.1016/j.jcat.2024.115506 http://dx.doi.org/10.1016/j.jcat.2024.115506 .
ILIC A , STRüCKER B R , JOHNSON C E , et al . Aminomethylations of electron-deficient compounds-bringing iron photoredox catalysis into play [J]. Chem Sci , 2024 , 15 ( 30 ): 12077 - 12085 . DOI: 10.1039/d4sc02612h http://dx.doi.org/10.1039/d4sc02612h .
SHI Z C , LI H M , SHENG W L , et al . Iron-catalyzed, visible-light-mediated decarboxylative cyclization reactions: a viable approach to 2,3-dihydrobenzofuran derivatives [J]. Chemistryselect , 2024 , 9 ( 39 ): e202404189 . DOI: 10.1002/slct.202404189 http://dx.doi.org/10.1002/slct.202404189 .
FERNÁNDEZ-GARCÍA S , CHANTZAKOU V O , JULIÁ-HERNÁNDEZ F . Direct decarboxylation of trifluoroacetates enabled by iron photocatalysis [J]. Angew Chem Int Ed , 2024 , 63 ( 5 ): e202311984 . DOI: 10.1002/anie.202311984 http://dx.doi.org/10.1002/anie.202311984 .
HAN W R , ZHAO Z Y , JIANG K , et al . Dual ligand-enabled iron and halogen-containing carboxylate-based photocatalysis for chloro/fluoro-polyhaloalkylation of alkenes [J]. Chem Sci , 2024 , 15 ( 47 ): 19936 - 19943 . DOI: 10.1039/d4sc04038d http://dx.doi.org/10.1039/d4sc04038d .
JIANG X Y , LAN Y , HAO Y D , et al . Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer [J]. Nat Commun , 2024 , 15 ( 1 ): 6115 . DOI: org/10.1038/s41467-024-50507-6 http://dx.doi.org/org/10.1038/s41467-024-50507-6 .
GUO H X , LAI W T , NI J , et al . Synthesis of alkyl bis(trifluoromethyl)carbinols via Fe-LMCT-enabled hydrobis(trifluoromethyl)carbinolation of alkenes [J]. Org Lett , 2024 , 26 ( 44 ): 9568 - 9573 . DOI: 10.1021/acs.orglett.4c03609 http://dx.doi.org/10.1021/acs.orglett.4c03609 .
LI L J , WEI Y , ZHAO Y L , et al . Radical-mediated decarboxylative C—C and C—S couplings of carboxylic acids via iron photocatalysis [J]. Org Lett , 2024 , 26 ( 5 ): 1110 - 1115 . DOI: 10.1021/acs.orglett.3c04395 http://dx.doi.org/10.1021/acs.orglett.3c04395 .
YU J X , CHENG Y Y , ZENG X Y , et al . 1,3-Difunctionalization of alkenes by cobaloxime photocatalysis [J]. Org Lett , 2024 , 26 ( 32 ): 6809 - 6813 . DOI: 10.1021/acs.orglett.4c02027 http://dx.doi.org/10.1021/acs.orglett.4c02027 .
LIU W Q , LEI T , ZHOU S , et al . Cobaloxime catalysis: selective synthesis of alkenylphosphine oxides under visible light [J]. J Am Chem Soc , 2019 , 141 ( 35 ): 13941 - 13947 . DOI: 10.1021/jacs.9b06920 http://dx.doi.org/10.1021/jacs.9b06920 .
LEI T , LIANG G , CHENG Y Y , et al . Cobaloxime catalysis for enamine phosphorylation with hydrogen evolution [J]. Org Lett , 2020 , 22 ( 14 ): 5385 - 5389 . DOI: 10.1021/acs.orglett.0c01709 http://dx.doi.org/10.1021/acs.orglett.0c01709 .
MÄRSCH J , REITER S , RITTNER T , et al . Cobalt-mediated photochemical C—H arylation of pyrroles [J]. Angew Chem Int Ed , 2024 , 63 ( 28 ): e202405780 . DOI : 10.1002/anie.202405780 http://dx.doi.org/10.1002/anie.202405780 .
ZHANG A J , LI M M , GUO L , et al . Photoinduced cobaloxime catalysis for allylic mono-and diphosphinylation of alkenes with hydrogen evolution [J]. Org Chem Front , 2024 , 12 ( 1 ): 148 - 158 . DOI: 10.1039/d4qo01638f http://dx.doi.org/10.1039/d4qo01638f .
QIN L Z , SUN H , DUAN X , et al . Visible-light-induced nickel-catalyzed selective S-arylation of peptides by exogenous-photosensitizer-free photocatalysis [J]. Cell Rep Phys Sci , 2023 , 4 ( 3 ): 101292 . DOI: 10.1016/j.xcrp.2023.101292 http://dx.doi.org/10.1016/j.xcrp.2023.101292 .
WANG G R , GUO P , PU G L , et al . Catalytic reduction of trifluoromethylated alkyl bromides and synthesis of alkylated heterocycles under visible light irradiation: synergetic action of a halogen bond and Ni catalysis [J]. Org Chem Front , 2024 , 11 ( 17 ): 4722 - 4729 . DOI: 10.1039/d4qo00966e http://dx.doi.org/10.1039/d4qo00966e .
LI J S , KANG T F , XIAO Y , et al . The multiple roles of bipyridine-nickel(ii) complex in versatile photoredox C(sp 2 )—C(sp 3 ) cross-coupling [J]. ACS Catal , 2025 , 15 ( 4 ): 3328 - 3338 . DOI: 10.1021/acscatal.4c07605 http://dx.doi.org/10.1021/acscatal.4c07605 .
LI N , LI B , MURUGESAN K , et al . Visible-light-induced excited-state copper catalysis: recent advances and perspectives [J]. ACS Catal , 2024 , 14 ( 16 ): 11974 - 11989 . DOI: 10.1021/acscatal.4c03238 http://dx.doi.org/10.1021/acscatal.4c03238 .
MUKHERJEE U , SHAH J A , NGAI M Y . Visible light-driven excited-state copper-BINAP catalysis for accessing diverse chemical reactions [J]. Chem Catal , 2024 , 4 ( 11 ): 101184 . DOI: 10.1016/j.checat.2024.101184 http://dx.doi.org/10.1016/j.checat.2024.101184 .
SONG L L , CAI L C , VAN DER EYCKEN E , et al . Recent advances in copper-catalyzed multicomponent reactions with photoinduction [J]. Coord Chem Rev , 2025 , 528 : 216428 . DOI: 10.1016/j.ccr.2024.216428 http://dx.doi.org/10.1016/j.ccr.2024.216428 .
LUO H , YU F N , LIN L Q . Visible-light excited copper activating unactivated alkyl iodides for radical addition/cyclization to access oxindole derivatives [J]. Org Chem Front , 2024 , 11 ( 22 ): 6380 - 6384 . DOI: 10.1039/d4qo01329h http://dx.doi.org/10.1039/d4qo01329h .
HU X X , WANG Y Z , XU S B , et al . Visible light-induced copper-catalyzed regio- and stereoselective difluoroalkylthiocyanation of alkynes [J]. J Org Chem , 2024 , 89 ( 12 ): 9118 - 9124 . DOI: 10.1021/acs.joc.4c00834 http://dx.doi.org/10.1021/acs.joc.4c00834 .
MEHER K B , LAHA D , DHARPURE P D , et al . Visible-light-induced copper-catalyzed radical reactions of diazo arylidene succinimides to access the pyromellitic diimide (PMDI) core [J]. Org Lett , 2024 , 26 ( 48 ): 10241 - 10247 . DOI: 10.1021/acs.orglett.4c03604 http://dx.doi.org/10.1021/acs.orglett.4c03604 .
XU X J , CHI Z M , RUI R , et al . Copper-catalyzed cyanoalkylation and trifluoromethylthiolation of styrene derivatives via a visible-light-promoted cross-coupling [J]. Adv Synth Catal , 2024 , 366 ( 11 ): 2607 - 2612 . DOI: 10.1002/adsc.202400116 http://dx.doi.org/10.1002/adsc.202400116 .
HUAN X D , ZHANG J , XIAO W J , et al . Photoinduced copper-catalyzed three-component radical carboamination of styrene derivatives [J]. Chemcatchem , 2024 , 16 ( 23 ), e202401234 . DOI: 10.1002/cctc.202401234 http://dx.doi.org/10.1002/cctc.202401234 .
MA B , CHEN Z Y , MA M , et al . Visible-light-induced copper-catalyzed regiodivergent C(sp 3 )-sulfonylation of oxime esters with sodium sulfinates [J]. Org Chem Front , 2024 , 11 ( 20 ): 5876 - 5883 . DOI: 10.1039/d4qo01099j http://dx.doi.org/10.1039/d4qo01099j .
LIU X Q , FAN J H , TANG K W , et al . Visible-light-induced copper-catalyzed alkylation/-cyclization of 1,7-dienes with sulfonium salts to access sulfur-containing polycyclic compounds [J]. Adv Synth Catal , 2024 , 366 ( 18 ): 3868 - 3874 . DOI: 10.1002/adsc.202400445 http://dx.doi.org/10.1002/adsc.202400445 .
CHEN H , SHANG X , JIANG N , et al . Photoinduced copper-catalyzed three-component alkylarylation of alkenes involving C—S bond cleavage of sulfonium salts [J]. Org Chem Front , 2025 , 12 : 1498 - 1505 . DOI: 10.1039/d4qo01740d http://dx.doi.org/10.1039/d4qo01740d .
LIU X Q , CHEN H , FAN J H , et al . Radical Cascade Cyclization of N—(o-Cyanobiaryl) acrylamides with Sulfonium Salts via Synergetic Photoredox and Copper Catalysis [J]. Org Lett , 2024 , 26 ( 36 ): 7650 - 7655 . DOI: 10.1021/acs.orglett.4c02759 http://dx.doi.org/10.1021/acs.orglett.4c02759 .
XU H , LI X F , WANG Y F , et al . Arylthianthrenium salts as the aryl sources: visible light/copper catalysis-enabled intermolecular azidosulfonylation of alkenes [J]. Org Lett , 2024 , 26 ( 9 ): 1845 - 1850 . DOI: 10.1021/acs.orglett.4c00017 http://dx.doi.org/10.1021/acs.orglett.4c00017 .
WU Q L , LI X F , MA J , et al . Arylcyanation of styrenes by photoactive electron donor-acceptor complexes/copper catalysis [J]. Org Lett , 2024 , 26 ( 37 ): 7949 - 7955 . DOI: 10.1021/acs.orglett.4c02992 http://dx.doi.org/10.1021/acs.orglett.4c02992 .
WANG Z H , WANG J F , YANG Z N , et al . Photoinduced Cu-catalyzed C2-H functionalization of azoles using aryl thianthrenium salts [J]. Adv Synth Catal , 2024 , 367 ( 4 ): e202401378 . DOI: 10.1002/adsc.202401378 http://dx.doi.org/10.1002/adsc.202401378 .
LIU X Q , LI X F , WANG L Y , et al . Visible light/copper catalysis enabled Heck-like coupling between alkenes and cyclic sulfonium salts selective C—S bond cleavage [J]. Org Chem Front , 2024 , 11 ( 8 ): 2195 - 2200 . DOI: 10.1039/d3qo02009f http://dx.doi.org/10.1039/d3qo02009f .
GUO G J , MA J , DONG Y Z , et al . Visible light/copper catalysis-enabled arylation and alkenylation of phosphorothioates via site-selective C—H thianthrenation [J]. Org Lett , 2024 , 26 ( 39 ): 8382 - 8388 . DOI: 10.1021/acs.orglett.4c03182 http://dx.doi.org/10.1021/acs.orglett.4c03182 .
MA J , LI X F , CHEN Y Q , et al . Annulation cascades of cyclosulfonium salts and alkenes towards sulfur-containing -heterocycles by visible light/copper catalysis [J]. Chin J Chem , 2024 , 42 ( 14 ): 1637 - 1643 . DOI: 10.1002/cjoc.202400105 http://dx.doi.org/10.1002/cjoc.202400105 .
KONG P , YE Y W , ZHANG X , et al . Alkylation of glycine derivatives through a synergistic single-electron transfer and halogen-atom transfer process [J]. Org Lett , 2024 , 26 ( 36 ): 7507 - 7513 . DOI: 10.1021/acs.orglett.4c02352 http://dx.doi.org/10.1021/acs.orglett.4c02352 .
YE Y W , JI D S , ZHOU C X , et al . Copper-catalyzed successive radical reactions of glycine derivatives [J]. Org Lett , 2025 , 27 ( 4 ): 1054 - 1059 . DOI: 10.1021/acs.orglett.4c04707 http://dx.doi.org/10.1021/acs.orglett.4c04707 .
SINGH B , BRIJBHUSHAN T N , KUMAR K , et al . Visible-light-mediated copper(Ⅰ)-catalyzed regiospecific amino-hydroxylation and amino-alkoxylation of vinyl arenes [J]. Eur J Org Chem , 2025 , 28 ( 1 ): e202400996 . DOI: 10.1002/ejoc.202400996 http://dx.doi.org/10.1002/ejoc.202400996 .
YANG X , XIAO Y X , YIN Y , et al . Visible-light or sunlight photoredox-catalyzed β-selective acylation of alkenes to access α,β-unsaturated ketones [J]. Org Chem Front , 2025 , 12 : 1543 - 1549 . DOI: 10.1039/d4qo02101k http://dx.doi.org/10.1039/d4qo02101k .
TOLBA A , EL-ZOHRY A M , KHAN J I , et al . Redox-innocent scandium(Ⅲ) as the sole catalyst in visible light photooxidations [J]. ChemRxiv , 2024 . DOI: 10.26434/chemrxiv-2024-m0xw7 http://dx.doi.org/10.26434/chemrxiv-2024-m0xw7 .
TU J L , HUANG B B . Titanium in photocatalytic organic transformations: current applications and future developments [J]. Org Biomol Chem , 2024 , 22 ( 33 ): 6650 - 6664 . DOI: 10.1039/d4ob01152j http://dx.doi.org/10.1039/d4ob01152j .
ZHANG Z H , HILCHE T , SLAK D , et al . Titanocenes as photoredox catalysts using green-light irradiation [J]. Angew Chem Int Ed , 2020 , 59 ( 24 ): 9355 - 9359 . DOI: 10.1002/anie.202001508 http://dx.doi.org/10.1002/anie.202001508 .
GAZI S , NG W K H , GANGULY R , et al . Selective photocatalytic C—C bond cleavage under ambient conditions with earth abundant vanadium complexes [J]. Chem Sci , 2015 , 6 ( 12 ): 7130 - 7142 . DOI: 10.1039/c5sc02923f http://dx.doi.org/10.1039/c5sc02923f .
GASPA S , LEDDA L , D'ATRI D , et al . A visible-light driven esterification of aldehydes catalyzed by VOSO 4 [J]. Adv Synth Catal , 2023 , 365 ( 4 ): 508 - 514 . DOI: 10.1002/adsc.202201134 http://dx.doi.org/10.1002/adsc.202201134 .
GASPA S , SCIORTINO G , PORCHEDDU A , et al . Oxidovanadium(Ⅳ) sulfate catalyses light-driven C—N bond formation [J]. Mol Catal , 2023 , 541 : 113054 . DOI: org10.1016/j.mcat.2023.113054 http://dx.doi.org/org10.1016/j.mcat.2023.113054 .
SHEN Z J , TU J L . Chromium in visible-light photocatalysis: unique reactivity, mechanisms and future directions [J]. Eur J Org Chem , 2025 , 28 ( 1 ): e202401016 . DOI: 10.1002/ejoc.202401016 http://dx.doi.org/10.1002/ejoc.202401016 .
BURGIN T H , GLASER F , WENGER O S . Shedding light on the oxidizing properties of spin-flip excited states in a cr polypyridine complex and their use in photoredox catalysis [J]. J Am Chem Soc , 2022 , 144 ( 31 ): 14181 - 14194 . DOI: 10.1021/jacs.2c04465 http://dx.doi.org/10.1021/jacs.2c04465 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621