
浏览全部资源
扫码关注微信
1.西南交通大学 生命科学与工程学院,四川 成都 610031
2.四川大学 生物医学工程学院,四川 成都 610000
[ "封顺,教授,博士生导师。主要研究方向为无机物和高分子化合物为基质的新型色谱材料的研发及其在生命分析中的应用。以第一/通讯作者在J. Am. Chem.Soc., Anal. Chem., Adv. Funct. Mater., ACS Appl. Mater. Interfaces, Adv. Matter. 等国内外期刊发表学术论文100 余篇,总引用次数3 000 余次,单篇最高被引近300 次。获“2007 年度中国百篇最具影响国际学术论文”。授权发明专利5 例(美国1 例)。主持和参与国家自然科学基金项目7 项、国家自然科学基金重大项目1 项、中国科学院重大仪器研发项目1 项、省部级3 项。参与制定省级地方质量标准4 项,获得省部级奖励3 项。Email: fengshun@swjtu.edu.cn" ]
[ "吴明雨,副教授,博士生导师。四川省“天府青城计划”青年科技人才。致力于生物医学荧光诊疗技术的研发。近五年以通讯作者/第一作者在PNAS,Adv. Mater.(4篇),Angew. Chem.,Adv. Funct. Mater.,Adv. Sci.等期刊发表系列研究论文30余篇。获国家自然科学基金面上和青年科学基金等项目资助,授权或公开发明专利7项。担任国家卓越计划领军期刊Chin. Chem. Lett.编委和Biomater. Transl.青年编委。Email: wumy@scu.edu.cn" ]
收稿日期:2025-03-31,
修回日期:2025-04-26,
纸质出版日期:2025-06-25
移动端阅览
王嘉莉,陈院,潘秀等.光动力疗法协同策略在抗细菌生物膜感染中的研究进展[J].新兴科学和技术趋势,2025,4(2):160-178.
WANG Jiali,CHEN Yuan,PAN Xiu,et al.Advances in Photodynamic Therapy Synergistic Strategies against Bacterial Biofilms Infections[J].Emerging Science and Technology,2025,4(2):160-178.
王嘉莉,陈院,潘秀等.光动力疗法协同策略在抗细菌生物膜感染中的研究进展[J].新兴科学和技术趋势,2025,4(2):160-178. DOI: 10.12405/j.issn.2097-1486.2025.02.005.
WANG Jiali,CHEN Yuan,PAN Xiu,et al.Advances in Photodynamic Therapy Synergistic Strategies against Bacterial Biofilms Infections[J].Emerging Science and Technology,2025,4(2):160-178. DOI: 10.12405/j.issn.2097-1486.2025.02.005.
细菌生物膜感染因具有持久性、复发性和高耐药性等特点,严重威胁人类健康。传统治疗主要依赖手术清创和抗生素,但存在侵入性、副作用大和耐药性增加等问题。光动力抗菌化学疗法(Photodynamic antimicrobial chemotherapy,PACT)因低耐药性、非侵入性、低毒副作用备受关注。然而,PACT治疗也面临诱发炎症、复发性感染及深部感染治疗效果受限等挑战。为克服这些问题,PACT协同治疗策略应运而生,可增强抗细菌生物膜效力、拓宽应用范围,并降低适应性耐药和感染复发的风险,在微生物诊疗领域展现巨大潜力。本综述系统总结了PACT与抗生素、气体疗法、光热疗法、声动力疗法及群体感应抑制剂的协同策略最新进展,并探讨其协同机制、生物膜模型构建、深层感染及临床转化方面的挑战与前景。
Bacterial biofilm infections pose a serious threat to human health due to their persistence, recurrence, and high resistance. Traditional treatments primarily rely on surgical debridement and antibiotics, but these approaches have limitations such as invasiveness, significant side effects, and increased resistance. Photodynamic antimicrobial chemotherapy (PACT) has gained attention for its low resistance, non-invasiveness, and minimal side effects. However, PACT treatment also faces challenges, including inflammation induction, recurrent infections, and limited efficacy in deep-seated infections. To address these issues, PACT-based combination therapies have emerged, enhancing anti-biofilm efficacy, expanding therapeutic applications, and reducing the risks of resistance and infection recurrence, demonstrating great potential in microbial diagnosis and treatment. This review systematically summarizes the latest advancements in PACT-based combination strategies with antibiotics, gas therapy, photothermal therapy, sonodynamic therapy, and quorum sensing inhibitors. Furthermore, it explores the synergistic mechanisms, biofilm model construction.
LI J , MENG Z , ZHUANG Z , et al . Effective Therapy of Drug-Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide [J]. Small , 2022 , 18 ( 17 ): 2200743 . DOI: 10.1002/smll.202200743 http://dx.doi.org/10.1002/smll.202200743 .
KOO H , ALLAN R N , HOWLIN R P , et al . Targeting microbial biofilms: current and prospective therapeutic strategies [J]. Nature Reviews Microbiology , 2017 , 15 ( 12 ): 740 - 755 . DOI: 10.1038/nrmicro.2017.99 http://dx.doi.org/10.1038/nrmicro.2017.99 .
SHARMA D , MISBA L , KHAN A U . Antibiotics versus biofilm: an emerging battleground in microbial communities [J]. Antimicrobial Resistance & Infection Control , 2019 , 8 ( 1 ): 1 - 10 . DOI: 10.1186/s13756-019-0533-3 http://dx.doi.org/10.1186/s13756-019-0533-3 .
HU D , DENG Y , JIA F , et al . Surface Charge Switchable Supramolecular Nanocarriers for Nitric Oxide Synergistic Photodynamic Eradication of Biofilms [J]. ACS Nano , 2020 , 14 ( 1 ): 347 - 359 . DOI: 10.1021/acsnano.9b05493 http://dx.doi.org/10.1021/acsnano.9b05493 .
RIBEIRO M , GOMES I B , SAAVEDRA M J , et al . Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections [J]. Letters in Applied Microbiology , 2022 , 75 ( 3 ): 548 - 564 . DOI: 10.1111/lam.13762 http://dx.doi.org/10.1111/lam.13762 .
SONGCA S P , ADJEI Y . Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms [J]. International Journal of Molecular Sciences , 2022 , 23 ( 6 ): 3209 . DOI: 10.3390/ijms23063209 http://dx.doi.org/10.3390/ijms23063209 .
SIONOV R V , STEINBERG D . Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria [J]. Microorganisms , 2022 , 10 ( 6 ): 1239 . DOI: 10.3390/microorganisms10061239 http://dx.doi.org/10.3390/microorganisms10061239 .
ÅRDAL C , BALASEGARAM M , LAXMINARAYAN R , et al . Antibiotic development-economic, regulatory and societal challenges [J]. Nature Reviews Microbiology , 2020 , 18 ( 5 ): 267 - 274 . DOI: 10.1038/s41579-019-0293-3 http://dx.doi.org/10.1038/s41579-019-0293-3 .
MARCHANT J . When antibiotics turn [J]. Nature , 2018 , 555 ( 7697 ): 431 - 433 . DOI: 10.1038/d41586-018-03267-5 http://dx.doi.org/10.1038/d41586-018-03267-5 .
MA W , CHEN X , FU L , et al . Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for Synergistic Antibacterial and Ablation Biofilms [J]. ACS Applied Materials & Interfaces , 2020 , 12 ( 20 ): 22479 - 22491 . DOI: 10.1021/acsami.0c01967 http://dx.doi.org/10.1021/acsami.0c01967 .
GNANASEKAR S , KASI G , HE X , et al . Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens [J]. Bioactive Materials , 2023 , 21 ( 3 ): 157 - 174 . DOI: 10.1016/j.bioactmat.2022.08.011 http://dx.doi.org/10.1016/j.bioactmat.2022.08.011 .
LI J , ZHUANG Z , ZHAO Z , et al . Type I AIE photosensitizers: Mechanism and application [J]. View , 2022 , 3 ( 2 ): 20200121 . DOI: 10.1002/VIW.20200121 http://dx.doi.org/10.1002/VIW.20200121 .
NASKAR A , KIM K S . Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections [J]. Pharmaceutics , 2023 , 15 ( 4 ): 1116 . DOI: 10.3390/pharmaceutics15041116 http://dx.doi.org/10.3390/pharmaceutics15041116 .
FAN B , PENG W , ZHANG Y , et al . ROS conversion promotes the bactericidal efficiency of Eosin Y based photodynamic therapy [J]. Biomaterials Science , 2023 , 11 ( 14 ): 4930 - 4937 . DOI: 10.1039/d3bm00804e http://dx.doi.org/10.1039/d3bm00804e .
VINAGREIRO C S , ZANGIROLAMI A , SCHABERLE F A , et al . Antibacterial Photodynamic Inactivation of Antibiotic-Resistant Bacteria and Biofilms with Nanomolar Photosensitizer Concentrations [J]. ACS Infectious Diseases , 2020 , 6 ( 6 ): 1517 - 1526 . DOI: 10.1021/acsinfecdis.9b00379 http://dx.doi.org/10.1021/acsinfecdis.9b00379 .
ZHUANG J , QI G , FENG Y , et al . Thymoquinone as an electron transfer mediator to convert Type II photosensitizers to Type Ⅰ photosensitizers [J]. Nature Communications , 2024 , 15 ( 1 ): 4943 . DOI: 10.1038/s41467-024-49311-z http://dx.doi.org/10.1038/s41467-024-49311-z .
XIA F W , GUO B W , ZHAO Y , et al . Type I Photosensitizer Targeting Glycans: Overcoming Biofilm Resistance by Inhibiting the Two-Component System, Quorum Sensing, and Multidrug Efflux [J]. Advanced Materials , 2023 , 35 ( 52 ): 2309797 . DOI: 10.1002/adma.202309797 http://dx.doi.org/10.1002/adma.202309797 .
WANG J L , PAN X , LI X , et al . Photoimmunologic Therapy of Stubborn Biofilm via Inhibiting Bacteria Revival and Preventing Reinfection [J]. Advanced Materials , 2025 , 37 ( 6 ): 2411468 . DOI: 10.1002/adma.202411468 http://dx.doi.org/10.1002/adma.202411468 .
WANG J L , XIA F W , WANG Y , et al . Molecular Charge and Antibacterial Performance Relationships of Aggregation-Induced Emission Photosensitizers [J]. ACS Applied Materials & Interfaces , 2023 , 15 ( 14 ): 17433 - 17443 . DOI: 10.1021/acsami.2c18835 http://dx.doi.org/10.1021/acsami.2c18835 .
WU M Y , WU Z J , ZOU Q , et al . From plasma membrane to mitochondria: Time-dependent photodynamic antibacterial and anticancer therapy with a near-infrared AIE-active photosensitizer [J]. Chemical Engineering Journal , 2023 , 454 ( P2 ): 140189 . DOI: 10.1016/j.cej.2022.140189 http://dx.doi.org/10.1016/j.cej.2022.140189 .
WU M Y , CHEN L , CHEN Q , et al . Engineered Phage with Aggregation-Induced Emission Photosensitizer in Cocktail Therapy against Sepsis [J]. Advanced Materials , 2023 , 35 ( 6 ): 2208578 . DOI: 10.1002/adma.202208578 http://dx.doi.org/10.1002/adma.202208578 .
WANG J L , CHEN Y , SONG J X , et al . Aggregation-Induced Emission Photosensitizer-Armored Magnetic Nanoparticles for Sepsis Treatment: Combating Multidrug-Resistant Bacteria and Alleviating Inflammation [J]. Advanced Functional Materials , 2024 , 34 ( 10 ): 2312162 . DOI: 10.1002/adfm.202312162 http://dx.doi.org/10.1002/adfm.202312162 .
WU M Y , XU X , HU R , et al . A Membrane-Targeted Photosensitizer Prevents Drug Resistance and Induces Immune Response in Treating Candidiasis [J]. Advanced Science , 2023 , 10 ( 35 ): 2207736 . DOI: 10.1002/advs.202207736 http://dx.doi.org/10.1002/advs.202207736 .
PEREZ-LAGUNA V , GARCIA-LUQUE I , BALLESTA S , et al . Photodynamic Therapy Combined with Antibiotics or Antifungals against Microorganisms That Cause Skin and Soft Tissue Infections: A Planktonic and Biofilm Approach to Overcome Resistances [J]. Pharmaceuticals , 2021 , 14 ( 7 ): 603 . DOI: 10.3390/ph14070603 http://dx.doi.org/10.3390/ph14070603 .
NIEVES I , HALLY C , VIAPPIANI C , et al . A porphycene-gentamicin conjugate for enhanced photodynamic inactivation of bacteria [J]. Bioorganic Chemistry , 2020 , 97 : 103661 . DOI: 10.1016/j.bioorg.2020.103661 http://dx.doi.org/10.1016/j.bioorg.2020.103661 .
HU D , ZOU L , YU W , et al . Relief of Biofilm Hypoxia Using an Oxygen Nanocarrier: A New Paradigm for Enhanced Antibiotic Therapy [J]. Advanced Science , 2020 , 7 ( 12 ): 2000398 . DOI: 10.1002/advs.202000398 http://dx.doi.org/10.1002/advs.202000398 .
XIU W , WAN L , YANG K , et al . Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections [J]. Nature Communications , 2022 , 13 ( 1 ): 1 - 13 . DOI: 10.1038/s41467-022-31479-x http://dx.doi.org/10.1038/s41467-022-31479-x .
RONQUI M R , FOGACA DE AGUIAR COLETTI T M S , DE FREITAS L M , et al . Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacinp [J]. Journal of Photochemistry and Photobiology B-Biology , 2016 , 158 : 122 - 129 . DOI: 10.1016/j.jphotobiol.2016.02.036 http://dx.doi.org/10.1016/j.jphotobiol.2016.02.036 .
LI X , HUANG W , ZHENG X , et al . Synergistic in vitro effects of indocyanine green and ethylenediamine tetraacetate-mediated antimicrobial photodynamic therapy combined with antibiotics for resistant bacterial biofilms in diabetic foot infection [J]. Photodiagnosis and Photodynamic Therapy , 2019 , 25 : 300 - 308 . DOI: 10.1016/j.pdpdt.2019.01.010 http://dx.doi.org/10.1016/j.pdpdt.2019.01.010 .
WILLIS J A , CHEBURKANOV V , CHEN S , et al . Breaking down antibiotic resistance in methicillin-resistant Staphylococcus aureus: Combining antimicrobial photodynamic and antibiotic treatments [J]. Proceedings of the National Academy of Sciences , 2022 , 119 ( 36 ): e2208378119 . DOI: 10.1073/pnas.2208378119 http://dx.doi.org/10.1073/pnas.2208378119 .
DENG Q , SUN P , ZHANG L , et al . Porphyrin MOF Dots-Based, Function -Adaptive Nanoplatform for Enhanced Penetration and Photodynamic Eradication of Bacterial Biofilms [J]. Advanced Functional Materials , 2019 , 29 ( 30 ): 1903018 . DOI: 10.1002/adfm.201903018 http://dx.doi.org/10.1002/adfm.201903018 .
GONG C , GUAN W , LIU X , et al . Biomimetic Bacteriophage-Like Particles Formed from Probiotic Extracts and NO Donors for Eradicating Multidrug-Resistant Staphylococcus aureus [J]. Advanced Materials , 2022 , 34 ( 45 ): 2206134 . DOI: 10.1002/adma.202206134 http://dx.doi.org/10.1002/adma.202206134 .
HU X , ZHANG H , WANG Y , et al . Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives [J]. Chemical Engineering Journal , 2022 , 450 : 138129 . DOI: 10.1016/j.cej.2022.138129 http://dx.doi.org/10.1016/j.cej.2022.138129 .
YAN Z , LIU Z , ZHANG H , et al . Current trends in gas-synergized phototherapy for improved antitumor theranostics [J]. Acta Biomaterialia , 2024 , 174 : 1 - 25 . DOI: 10.1016/j.actbio.2023.12.012 http://dx.doi.org/10.1016/j.actbio.2023.12.012 .
LIU P , WANG Y , LIU Y , et al . S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment [J]. Theranostics , 2020 , 10 ( 15 ): 6774 - 6789 . DOI: 10.7150/thno.42661 http://dx.doi.org/10.7150/thno.42661 .
CHEN X , FAN Q , LI K , et al . Amphiphilic Janus nanoparticles for nitric oxide synergistic photodynamic eradication of MRSA biofilms [J]. Biomaterials Science , 2024 , 12 ( 4 ): 964 - 977 . DOI: 10.1039/d3bm01510f http://dx.doi.org/10.1039/d3bm01510f .
ZHAO Z , LI H , TAO X , et al . Light-Triggered Nitric Oxide Release by a Photosensitizer to Combat Bacterial Biofilm Infections [J]. Chemistry-A European Journal , 2021 , 27 ( 17 ): 5453 - 5460 . DOI: 10.1002/chem.202004698 http://dx.doi.org/10.1002/chem.202004698 .
ZHENG J , WANG W , GAO X , et al . Cascade Catalytically Released Nitric Oxide-Driven Nanomotor with Enhanced Penetration for Antibiofilm [J]. Small , 2022 , 18 ( 52 ): 2205252 . DOI: 10.1002/smll.202205252 http://dx.doi.org/10.1002/smll.202205252 .
YAN H , DU J , ZHU S , et al . Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials [J]. Small , 2019 , 15 ( 49 ): e1904382 .DOI;10.1002/smll.201904382.
CHENG J , GAN G , ZHENG S , et al . Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections [J]. Nature Communications , 2023 , 14 ( 1 ): 7510 . DOI: 10.1038/s41467-023-43415-8 http://dx.doi.org/10.1038/s41467-023-43415-8 .
ZHU J , TIAN J , YANG C , et al . L-Arg-Rich Amphiphilic Dendritic Peptide as a Versatile NO Donor for NO/Photodynamic Synergistic Treatment of Bacterial Infections and Promoting Wound Healing [J]. Small , 2021 , 17 ( 32 ) : 2101495 . DOI: 10.1002/smll.202101495 http://dx.doi.org/10.1002/smll.202101495 .
LIU W , SUN Y , ZHOU B , et al . Near-infrared light triggered upconversion nanocomposites with multifunction of enhanced antimicrobial photodynamic therapy and gas therapy for inflammation regulation [J]. Journal of Colloid and Interface Science , 2024 , 663 : 834 - 846 . DOI: 10.1016/j.jcis.2024.02.179 http://dx.doi.org/10.1016/j.jcis.2024.02.179 .
ZHOU B , SUN X , DONG B , et al . Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections [J]. Theranostics , 2022 , 12 : 2580 - 2597 . DOI: 10.7150/thno.70277 http://dx.doi.org/10.7150/thno.70277 .
ZHANG Y , YUE T , GU W , et al . pH-responsive hierarchical H 2 S-releasing nano-disinfectant with deep-penetrating and anti-inflammatory properties for synergistically enhanced eradication of bacterial biofilms and wound infection [J]. Journal of Nanobiotechnology , 2022 , 20 ( 1 ): 55 . DOI: 10.1186/s12951-022-01262-7 http://dx.doi.org/10.1186/s12951-022-01262-7 .
TIAN J , HUANG B , XIA L , et al . A H 2 S-Generated Supramolecular Photosensitizer for Enhanced Photodynamic Antibacterial Infection and Relieving Inflammation [J]. Advanced Science , 2024 , 11 ( 9 ): 2305183 . DOI: 10.1002/advs.202305183 http://dx.doi.org/10.1002/advs.202305183 .
WANG T Y , ZHU X Y , WU F G . Antibacterial gas therapy: strategies, advances, and prospects [J]. Bioactive Materials , 2023 , 23 ( 5 ): 129 - 155 . DOI: 10.1016/j.bioactmat.2022.10.008 http://dx.doi.org/10.1016/j.bioactmat.2022.10.008 .
QI M , REN X , LI W , et al . NIR responsive nitric oxide nanogenerator for enhanced biofilm eradication and inflammation immunotherapy against periodontal diseases [J]. Nano Today , 2022 , 43 : 101447 . DOI: 10.1016/j.nantod.2022.101447 http://dx.doi.org/10.1016/j.nantod.2022.101447 .
CAI X , TIAN J , ZHU J , et al . Photodynamic and photothermal co-driven CO-enhanced multi-mode synergistic antibacterial nanoplatform to effectively fight against biofilm infections [J]. Chemical Engineering Journal , 2021 , 426 : 131919 . DOI: 10.1016/j.cej.2021.131919 http://dx.doi.org/10.1016/j.cej.2021.131919 .
ZHANG A , WU H , CHEN X , et al . Targeting and arginine-driven synergizing photodynamic therapy with nutritional immunotherapy nanosystems for combating MRSA biofilms [J]. Science Advances , 2023 , 9 ( 28 ): eadg9116 . DOI: 10.1126/sciadv.adg9116 http://dx.doi.org/10.1126/sciadv.adg9116 .
ZHANG X , ZHANG G , CHAI M , et al . Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO 2 nanorod arrays for safe biofilm eradication on implant [J]. Bioactive materials , 2021 , 6 ( 1 ): 12 - 25 . DOI: 10.1016/j.bioactmat.2020.07.017 http://dx.doi.org/10.1016/j.bioactmat.2020.07.017 .
WANG W , CHENG X , LIAO J , et al . Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu 9 S 8 nanoparticles [J]. ACS Biomaterials Science & Engineering , 2019 , 5 ( 11 ): 6243 - 6253 . DOI: 10.1021/acsbiomaterials.9b01280 http://dx.doi.org/10.1021/acsbiomaterials.9b01280 .
WANG H , GONG S , LI X , et al . SDS coated Fe 3 O 4 @ MoS 2 with NIR-enhanced photothermal-photodynamic therapy and antibiotic resistance gene dissemination inhibition functions [J]. Colloids and Surfaces B: Biointerfaces , 2022 , 214 : 112457 . DOI: 10.1016/j.colsurfb.2022.112457 http://dx.doi.org/10.1016/j.colsurfb.2022.112457 .
ALVES F , GOMES GUIMARAES G , Mayumi Inada N , et al . Strategies to Improve the Antimicrobial Efficacy of Photodynamic, Sonodynamic, and Sonophotodynamic Therapies [J]. Lasers in Surgery and Medicine , 2021 , 53 ( 8 ): 1113 - 1121 . DOI: 10.1002/lsm.23383 http://dx.doi.org/10.1002/lsm.23383 .
HU H , ZHAO J , MA K , et al . Sonodynamic therapy combined with phototherapy: Novel synergistic strategy with superior efficacy for antitumor and antiinfection therapy [J]. Journal of Controlled Release , 2023 , 359 ( 1 ): 188 - 205 . DOI: 10.1016/j.jconrel.2023.05.041 http://dx.doi.org/10.1016/j.jconrel.2023.05.041 .
WANG X , ZHONG X , GONG F , et al . Newly developed strategies for improving sonodynamic therapy [J]. Materials Horizons , 2020 , 7 ( 8 ): 2028 - 2046 . DOI: 10.1039/d0mh00613k http://dx.doi.org/10.1039/d0mh00613k .
GOBBO DE MELO P B , BESEGATO J F , ABREU BERNARDI A C , et al . Can sono-photodynamic therapy enhance the antibacterial effect of curcumin against Streptococcus mutans biofilm? [J]. Laser Physics Letters , 2021 , 18 ( 10 ): 105601 . DOI: 10.1088/1612-202X/ac1742 http://dx.doi.org/10.1088/1612-202X/ac1742 .
SONGCA S P , ADIJEI Y . Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms [J]. International Journal of Molecular Sciences , 2022 , 23 ( 6 ): 3209 . DOI: 10.3390/ijms23063209 http://dx.doi.org/10.3390/ijms23063209 .
NIAVARZI S , POURHAJIBAGHER M , KHEDMAT S , et al . Effect of ultrasonic activation on the efficacy of antimicrobial photodynamic therapy: Evaluation of penetration depth of photosensitizer and elimination of Enterococcus faecalis biofilms [J]. Photodiagnosis and Photodynamic Therapy , 2019 , 27 : 362 - 366 . DOI: 10.1016/j.pdpdt.2019.06.001 http://dx.doi.org/10.1016/j.pdpdt.2019.06.001 .
ALVES F , PRATAVIEIRA S , INADA N M , et al . Effects on Colonization Factors and Mechanisms Involved in Antimicrobial Sonophotodynamic Inactivation Mediated by Curcumin [J]. Pharmaceutics , 2023 , 15 ( 10 ): 2407 . 10.3390/pharmaceutics15102407 http://dx.doi.org/10.3390/pharmaceutics15102407 .
WYSOCKI M , CZARCZYNSKA-GOSLINSKA B , ZIENTAL D , et al . Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono-Photodynamic Therapy [J]. ChemMedChem , 2022 , 17 ( 13 ): e202200185 . DOI: 10.1002/cmdc.202200185 http://dx.doi.org/10.1002/cmdc.202200185 .
POURHAJIBAGHER M , BAHADOR A . Attenuation of Aggregatibacter actinomycetemcomitans virulence using curcumin-decorated nanophytosomes-mediated photo-sonoantimicrobial chemotherapy [J]. Scientific Reports , 2021 , 11 ( 1 ): 1 - 14 . DOI: 10.1038/s41598-021-85437-6 http://dx.doi.org/10.1038/s41598-021-85437-6 .
SILVA E CARVALHO I , PRATAVIEIRA S , BAGNATO V S , et al . Sonophotodynamic inactivation of Pseudomonas aeruginosa biofilm mediated by curcumin [J]. Biofouling , 2023 , 39 ( 6 ): 606 - 616 . DOI: 10.1080/08927014.2023.2241385 http://dx.doi.org/10.1080/08927014.2023.2241385 .
ATMACA G Y , KARANLIK C C , ERDOGMUS A . Measurement of improved singlet oxygen generations of indium chloride phthalocyanines by comparatively sono-photochemical and photochemical studies [J]. Dyes and Pigments , 2021 , 194 : 109630 . DOI: 10.1016/j.dyepig.2021.109630 http://dx.doi.org/10.1016/j.dyepig.2021.109630 .
PANG X , LI D , ZHU J , et al . Beyond Antibiotics: Photo/Sonodynamic Approaches for Bacterial Theranostics [J]. Nano-micro Letters , 2020 , 12 ( 1 ): 144 . DOI: 10.1007/s40820-020-00485-3 http://dx.doi.org/10.1007/s40820-020-00485-3 .
YEHUDA A , MALACH E , OOFRIS V , et al . The quorum-sensing peptidic inhibitor rescues host immune system eradication: A novel infectivity mechanism [J]. Proceedings of the National Academy of Sciences , 2023 , 120 ( 35 ): e2301045120 . DOI: 10.1073/pnas.2301045120 http://dx.doi.org/10.1073/pnas.2301045120 .
TAN S Y Y , LIU Y , CHUA S L , et al . Comparative systems biology analysis to study the mode of action of the isothiocyanate compound iberin on Pseudomonas aeruginosa [J]. Antimicrobial Agents and Chemotherapy , 2014 , 58 ( 11 ): 6648 - 6659 . DOI: 10.1128/AAC.02620-13 http://dx.doi.org/10.1128/AAC.02620-13 .
VASHISTHA A , SHARMA N , NANAJI Y , et al . Quorum sensing inhibitors as Therapeutics: Bacterial biofilm inhibition [J]. Bioorganic Chemistry , 2023 , 136 ( 1 ): 106551 . DOI: 10.1016/j.bioorg.2023.106551 http://dx.doi.org/10.1016/j.bioorg.2023.106551 .
LU L , LI M , YI G , et al . Screening strategies for quorum sensing inhibitors in combating bacterial infections [J]. Journal of Pharmaceutical Analysis , 2022 , 12 ( 1 ): 1 - 14 . DOI: 10.1016/j.jpha.2021.03.009 http://dx.doi.org/10.1016/j.jpha.2021.03.009 .
PRATEEKSHA P , SHARMA V , NAGPOORE N , et al . Bacteria-Responsive Multidrug Delivery Nanosystem for Combating Long-Term Biofilm-Associated Infections [J]. Advanced Functional Materials , 2023 , 33 ( 28 ): 2214852 . DOI: 10.1002/adfm.202214852 http://dx.doi.org/10.1002/adfm.202214852 .
SUN Y , QIN H , YAN Z , et al . Combating Biofilm Associated Infection In Vivo: Integration of Quorum Sensing Inhibition and Photodynamic Treatment based on Multidrug Delivered Hollow Carbon Nitride Sphere [J]. Advanced Functional Materials , 2019 , 29 ( 14 ): 1808222 . DOI: 10.1002/adfm.201808222 http://dx.doi.org/10.1002/adfm.201808222 .
DAHSHAN N A , ABU-DAHAB R , KHALIL E A , et al . Bactericidal effect of Iberin combined with photodynamic antimicrobial chemotherapy against Pseudomonas aeruginosa biofilm cultured on ex vivo wound model [J]. Photodiagnosis and Photodynamic Therapy , 2023 , 44 : 103841 . DOI: 10.1016/j.pdpdt.2023.103841 http://dx.doi.org/10.1016/j.pdpdt.2023.103841 .
BROWN J L , TOWNSEND E , SHORT R D , et al . Assessing the inflammatory response to in vitro polymicrobial wound biofilms in a skin epidermis model [J]. NPJ Biofilms and Microbiomes , 2022 , 8 ( 1 ): 19 . DOI: 10.1038/s41522-022-00286-z http://dx.doi.org/10.1038/s41522-022-00286-z .
CHEN S H , ZHANG Z S , WEI L , et al . Photo-catalytic Staphylococcus aureus inactivation and biofilm destruction with novel bis-tridentate iridium(Ⅲ) photocatalyst [J]. Chinese Chemical Letters , 2023 , 34 ( 11 ): 191 - 194 . DOI: 10.1016/j.cclet.2023.108412 http://dx.doi.org/10.1016/j.cclet.2023.108412 .
XIE T , QI Y , LI Y , et al . Ultrasmall Ga-ICG nanoparticles based gallium ion/photodynamic synergistic therapy to eradicate biofilms and against drug-resistant bacterial liver abscess [J]. Bioactive Materials , 2021 , 6 ( 11 ): 3812 - 3823 . DOI: 10.1016/j.bioactmat.2021.03.032 http://dx.doi.org/10.1016/j.bioactmat.2021.03.032 .
WANG C , LIN Y , HUANG J , et al . Pseudomonas aeruginosa targeting cascade photodynamic nanoassemblies for efficient antibacterial and anti-inflammatory therapy [J]. Nano Today , 2023 , 51 ( 1 ): 101892 . DOI: 10.1016/j.nantod.2023.101892 http://dx.doi.org/10.1016/j.nantod.2023.101892 .
LEI X L , CHENG K , LI Y , et al . The eradication of biofilm for therapy of bacterial infected chronic wound based on pH-responsive micelle of antimicrobial peptide derived biodegradable microneedle patch [J]. Chemical Engineering Journal , 2023 , 462 ( 1 ): 142222 . DOI: 10.1016/j.cej.2023.142222 http://dx.doi.org/10.1016/j.cej.2023.142222 .
YANG Z R , XIONG J , WEI S , et al . Metalloprotein-inspired supramolecular photodynamic nanodrugs by multicomponent coordination for deep penetration and enhanced biofilm eradication [J]. Nano Research , 2023 , 16 ( 5 ): 7312 - 7322 . DOI: 10.1007/s12274-023-5392-9 http://dx.doi.org/10.1007/s12274-023-5392-9 .
SHIH Y H , YU C C , CHANG K C , et al . Synergistic Effect of Combination of a Temoporfin-Based Photodynamic Therapy with Potassium Iodide or Antibacterial Agents on Oral Disease Pathogens In Vitro [J]. Pharmaceuticals , 2022 , 15 ( 4 ): 488 . DOI: 10.3390/ph15040488 http://dx.doi.org/10.3390/ph15040488 .
WANG J , GENG T , WANG Y , et al . Efficacy of antibacterial agents combined with erbium laser and photodynamic therapy in reducing titanium biofilm vitality: an in vitro study [J]. BMC Oral Health , 2023 , 23 ( 1 ): 32 . DOI: 10.1186/s12903-023-02730-8 http://dx.doi.org/10.1186/s12903-023-02730-8 .
SUN P , YE L , TAN X , et al . Silver Nanoparticle-Assisted Photodynamic Therapy for Biofilm Eradication [J]. ACS Applied Nano Materials , 2022 , 5 ( 6 ): 8251 - 8259 . DOI: 10.1021/acsanm.2c01327 http://dx.doi.org/10.1021/acsanm.2c01327 .
LIU X , REN Y , FAN D , et al . Shining Light on Multidrug-Resistant Bacterial Infections: Rational Design of Multifunctional Organosilver-Based AIEgen Probes as Light-Activated Theranostics for Combating Biofilms and Liver Abscesses [J]. Advanced Functional Materials , 2023 , 33 ( 45 ): 2304974 . DOI: 10.1002/adfm.202304974 http://dx.doi.org/10.1002/adfm.202304974 .
LI H , GONG M , XIAO J , et al . Photothermally activated multifunctional MoS2 bactericidal nanoplatform for combined chemo/photothermal/photodynamic triple-mode therapy of bacterial and biofilm infections [J]. Chemical Engineering Journal , 2022 , 429 : 132600 . DOI: 10.1016/j.cej.2021.132600 http://dx.doi.org/10.1016/j.cej.2021.132600 .
QI F , WANG Z , YANG L , et al . A collaborative CeO 2 @metal-organic framework nanosystem to endow scaffolds with photodynamic antibacterial effect [J]. Materials Today Chemistry , 2023 , 27 : 101336 . DOI: 10.1016/j.mtchem.2022.101336 http://dx.doi.org/10.1016/j.mtchem.2022.101336 .
TABASSUM N , KHAN F , KANG M G , et al . Inhibition of polymicrobial biofilms of Candida albicans-Staphylococcus aureus/Streptococcus mutans by fucoidan-gold nanoparticles [J]. Marine Drugs , 2023 , 21 ( 2 ): 123 . DOI: 10.3390/md21020123 http://dx.doi.org/10.3390/md21020123 .
DAI T , HUANG Y Y , HAMBLIN M R . Photodynamic therapy for localized infections-State of the art [J]. Photodiagnosis and Photodynamic Therapy , 2009 , 6 ( 3-4 ): 170 - 188 . DOI: 10.1016/j.pdpdt.2009.10.008 http://dx.doi.org/10.1016/j.pdpdt.2009.10.008 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621