
浏览全部资源
扫码关注微信
东华大学 化学与化工学院,上海 201620
[ "易涛,教授,博导,国家杰出青年基金获得者,入选上海市浦江人才和上海市优秀学术带头人。1987、1990和1998年在北京大学分别获学士、硕士和博士学位,1999—2004年分别在日本京都大学(日本学术振兴会JSPS博士后)、日本东京大学和法国巴黎大学(Ⅺ校)从事研究工作,2004年5月加盟复旦大学,2019年加盟东华大学,从事分子/超分子光功能材料,生物分子的荧光检测和荧光成像以及诊疗一体化等方面的研究。在J. Am. Chem. Soc.,Angew. Chem. Int. Ed.,Adv. Mater.,Adv. Sci.,Chem. Soc. Rev.等期刊发表研究论文240余篇。被Nature China,Chemistry World,Noteworth Chemistry等国外科技新闻杂志亮点评述。获上海市自然科学二等奖(第一完成人,2023),教育部自然科学一等奖(第二完成人,2015),国家科技进步二等奖(第四完成人,2000)。担任无机化学学报、Smart Molecules,Crystals等期刊编委。兼任上海市生物医学工程学会委员、中国晶体学会陶瓷专业委员会委员、稀土材料化学与生物交叉专委会委员等。" ]
收稿日期:2025-04-27,
修回日期:2025-06-05,
纸质出版日期:2025-06-25
移动端阅览
蒋维维,张灯青,易涛.基于共振能量转移机制的人工光捕获体系应用研究进展[J].新兴科学和技术趋势,2025,4(2):179-199.
JIANG Weiwei,ZHANG Dengqing,YI Tao.Research advances of FRET-based artificial light-harvesting systems[J].Emerging Science and Technology,2025,4(2):179-199.
蒋维维,张灯青,易涛.基于共振能量转移机制的人工光捕获体系应用研究进展[J].新兴科学和技术趋势,2025,4(2):179-199. DOI: 10.12405/j.issn.2097-1486.2025.02.006.
JIANG Weiwei,ZHANG Dengqing,YI Tao.Research advances of FRET-based artificial light-harvesting systems[J].Emerging Science and Technology,2025,4(2):179-199. DOI: 10.12405/j.issn.2097-1486.2025.02.006.
近年来,基于Förster共振能量转移(FRET)机制的人工光捕获系统(ALHSs)因其高效的光能捕获与定向传递特性,在化学、生物与材料科学等学科领域中展现出广阔的应用前景,正在成为跨学科研究的前沿热点。基于Förster共振能量转移机制的人工光捕获系统具有以下优势:①高效的能量定向传递:通过供体-受体(D-A)分子的精确光谱匹配与空间排布(1~10 nm),构建级联能量传递网络,量子效率可超过80%,显著提升光能捕获效率;②优异的多级能量传递能力:能够实现多步骤能量转移,提高能量利用效率;③出色的可逆性和可调控性:可通过外部刺激(如光、化学物质)动态调控能量的传递过程。基于Förster共振能量转移机制的人工光捕获系统近年来实现了跨越式发展,并在基础理论与技术应用层面取得一系列突破性成果。该领域有望突破能效与功能瓶颈,通过多学科协同创新推动其向能源、医疗、信息等跨领域应用的革新性渗透。本文系统梳理了基于Förster共振能量转移机制的人工光捕获系统在催化转化、光学防伪、生物应用及精准检测四大应用方向的研究进展,并深入探讨了该领域目前存在的关键挑战与未来发展方向。
In recent years, artificial light-harvesting systems based on Förster resonance energy transfer (FRET) mechanism have become cutting-edge interdisciplinary research in chemistry, biology and material science, etc. owing to their efficient light energy capture and directional energy transfer characteristics. FRET-based artificial light-harvesting systems have the following advantages: (1) Highly directional energy transfer. Precise spectral matching and spatial arrangement (1~10 nm) of donor-acceptor (D-A) pairs enable cascaded energy transfer networks with quantum efficiencies exceeding 80%, significantly surpassing conventional systems; (2) Superior multi-step energy transfer. Multi-level energy migration pathways enhance overall energy utilization efficiency; (3) Dynamic reversibility and tunability. External stimuli (e.g., light, chemical substances) allow real-time modulation of energy transfer dynamics. FRET-based artificial light-harvesting systems have recently achieved leapfrog development and made a series of breakthroughs in both fundamental theories and technological applications. This field is expected to break through the bottlenecks of energy efficiency and functionality, and promote its innovative penetration into cross-field applications of energy, healthcare, and information through multi-disciplinary collaborative innovation. This paper systematically reviews the research progress of FRET-based artificial light-harvesting systems in four major application directions, i.e. catalytic conversion, optical anti-counterfeiting, biological application and precise detection, and deeply discusses the key challenges and future directions existing in this field at present.
TANG C , ZHENG Y , JARONIEC M , et al . Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals [J]. Angewandte Chemie International Edition , 2021 , 60 ( 36 ): 19572 - 19590 . DOI: 10.1002/anie.202101522 http://dx.doi.org/10.1002/anie.202101522 .
BAE S , MAHMOOD J , JEON I , et al . Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction [J]. Nanoscale Horizons , 2020 , 5 ( 1 ): 43 - 56 . DOI: 10.1039/C9NH00485H http://dx.doi.org/10.1039/C9NH00485H .
SHEN X , ZHANG C , HAN B , et al . Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future [J]. Chemical Society Reviews , 2022 , 51 ( 5 ): 1608 - 1628 . DOI: 10.1039/D1CS00908G http://dx.doi.org/10.1039/D1CS00908G .
WANG Y , SUZUKI H , XIE J , et al . Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems [J]. Chemical Reviews , 2018 , 118 ( 10 ): 5201 - 5241 . DOI: 10.1021/acs.chemrev.7b00286 http://dx.doi.org/10.1021/acs.chemrev.7b00286 .
LV J , XIE J , MOHAMED A , et al . Solar utilization beyond photosynthesis [J]. Nature Reviews Chemistry , 2023 , 7 ( 2 ): 91 - 105 . DOI: 10.1038/s41570-022-00448-9 http://dx.doi.org/10.1038/s41570-022-00448-9 .
CHU S , ZHANG B , ZHAO X , et al . Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis [J]. Advanced Energy Materials , 2022 , 12 ( 22 ): 2200435 . DOI: 10.1002/aenm.202200435 http://dx.doi.org/10.1002/aenm.202200435 .
MIRKOVIC T , OSTROUMOV E , ANNA J , et al . Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms [J]. Chemical Reviews , 2017 , 117 ( 2 ): 249 - 293 . DOI: 10.1021/acs.chemrev.6b00002 http://dx.doi.org/10.1021/acs.chemrev.6b00002 .
LI Y , LI J , ZENG H , et al . Artificial Light-Harvesting System Based on Zinc Porphyrin and Benzimidazole: Construction, Resonance Energy Transfer, and Amplification Strategy for Electrochemiluminescence [J]. Analytical Chemistry , 2023 , 95 ( 3 ): 3493 - 3498 . DOI: 10.1021/acs.analchem.2c05559 http://dx.doi.org/10.1021/acs.analchem.2c05559 .
XUE Z , LUAN D , ZHANG H , et al . Single-atom catalysts for photocatalytic energy conversion [J]. Joule , 2022 , 6 ( 1 ): 92 - 133 . DOI: 10.1016/j.joule.2021.12.011 http://dx.doi.org/10.1016/j.joule.2021.12.011 .
ZHU Q , XU Q , DU M , et al . Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion [J]. Advanced Materials , 2022 , 34 ( 45 ): 2202929 . DOI: 10.1002/adma.202202929 http://dx.doi.org/10.1002/adma.202202929 .
WANG Z , HU Y , ZHANG S , et al . Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities [J]. Chemical Society Reviews , 2022 , 51 ( 15 ): 6704 - 6737 . DOI: 10.1039/d1cs01008e http://dx.doi.org/10.1039/d1cs01008e .
HU Y , LI W , JIA P , et al . Supramolecular Artificial Light-Harvesting Systems with Aggregation-Induced Emission [J]. Advanced Optical Materials , 2020 , 8 ( 14 ): 2000265 . DOI: 10.1002/adom.202000265 http://dx.doi.org/10.1002/adom.202000265 .
MILLER R , STEPHANOPOULOS N , MCFARLAND J , et al . Impact of Assembly State on the Defect Tolerance of TMV-Based Light Harvesting Arrays [J]. Journal of the American Chemical Society , 2010 , 132 ( 17 ): 6068 - 6074 . DOI: 10.1021/ja909566z http://dx.doi.org/10.1021/ja909566z .
ZHANG D , YU W , LI S , et al . Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis [J]. Journal of the American Chemical Society , 2021 , 143 ( 3 ): 1313 - 1317 . DOI: 10.1021/jacs.0c12522 http://dx.doi.org/10.1021/jacs.0c12522 .
LI D , LIU X , YANG L , et al . Highly efficient Förster resonance energy transfer between an emissive tetraphenylethylene-based metal-organic cage and the encapsulated dye guest [J]. Chemical Science , 2023 , 14 ( 8 ): 2237 - 2244 . DOI: 10.1039/d2sc06022a http://dx.doi.org/10.1039/d2sc06022a .
WANG Y , HAN N , LI X , et al . Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water [J]. ACS Applied Materials & Interfaces , 2022 , 14 ( 40 ): 45734 - 45741 . DOI: 10.1021/acsami.2c14168 http://dx.doi.org/10.1021/acsami.2c14168 .
FIANKOR C , NYAKUCHENA J , KHOO R , et al . Symmetry-Guided Synthesis of N,N' -Bicarbazole and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks: Light Harvesting and Energy Transfer [J]. Journal of the American Chemical Society , 2021 , 143 ( 48 ): 20411 - 20418 . DOI: 10.1021/jacs.1c10291 http://dx.doi.org/10.1021/jacs.1c10291 .
LI Y , XIA C , TIAN R , et al . “On/Off” Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis [J]. ACS Nano , 2022 , 16 ( 5 ): 8012 - 8021 . DOI: 10.1021/acsnano.2c00960 http://dx.doi.org/10.1021/acsnano.2c00960 .
XIA Y , CHEN M , LI S , et al . An artificial light-harvesting system with sequential energy transfer for information dual encryption and anticounterfeiting [J]. Journal of Materials Chemistry C , 2022 , 10 ( 34 ): 12332 - 12337 . DOI: 10.1039/D2TC00481J http://dx.doi.org/10.1039/D2TC00481J .
LI JING , ZHANG H , DAI X , et al . A highly efficient light-harvesting system with sequential energy transfer based on a multicharged supramolecular assembly [J]. Chemical Communications , 2020 , 56 ( 44 ): 5947 - 5952 . DOI: 10.1039/D0CC01292K http://dx.doi.org/10.1039/D0CC01292K .
LIU G , ZHANG H , XU X , et al . Supramolecular photoswitch with white-light emission based on bridged bis(pillar[5]arene)s [J]. Materials Today Chemistry , 2021 , 24 ( 6 ): 100628 . DOI: 10.1016/j.mtchem.2021.100628 http://dx.doi.org/10.1016/j.mtchem.2021.100628 .
MARDANI H , ROGHANI-MAMAQANI H , SHAHI S , et al . Anti-Counterfeiting Inks Based on Förster Resonance Energy Transfer in Microcrystalline Cellulose-Grafted Poly(amidoamine) for Artificial Industries [J]. ACS Applied Polymer Materials , 2023 , 5 ( 2 ): 1092 - 1102 . DOI: 10.1021/acsapm.2c01251 http://dx.doi.org/10.1021/acsapm.2c01251 .
GUO Z , BIAN Y , ZHANG L , et al . Multi-Stimuli-Responsive Carbon Dots with Intrinsic Photochromism and In Situ Radical Afterglow [J]. Advanced Materials , 2024 , 36 ( 45 ): 2409361 . DOI: 10.1002/adma.202409361 http://dx.doi.org/10.1002/adma.202409361 .
ZHANG D , JIANG B , YANG J , et al . A sequential artificial light-harvesting system based on a metallacycle for sensitive detection of biothiols [J]. Journal of Materials Chemistry C , 2024 , 12 ( 44 ): 17841 - 17848 . DOI: 10.1039/d4tc03584d http://dx.doi.org/10.1039/d4tc03584d .
ZHANG D , LIU S , YANG X , et al . An Aggregation-Induced Emissive Platinum(Ⅱ) Metallacycle as the Energy Donor of Rhodols for Ratiometric Detection of Hydrazine [J]. ACS Applied Materials & Interfaces , 2024 , 16 ( 41 ): 55996 - 56005 . DOI: 10.1021/acsami.4c12744 http://dx.doi.org/10.1021/acsami.4c12744 .
LI M , SHI Q , SONG N , et al . Self-Assembled Artificial Light-Harvesting System Constructed Using Electrostatic Interactions in Aqueous Solution for the Sensing of Heavy Metal Cations [J]. Advanced Optical Materials , 2023 , 11 ( 15 ): 2203079 . DOI: 10.1002/adom.202203079 http://dx.doi.org/10.1002/adom.202203079 .
LI Y , ZHANG L , ZHANG Z , et al . MnO 2 Nanospheres Assisted by Cysteine Combined with MnO 2 Nanosheets as a Fluorescence Resonance Energy Transfer System for “Switch-on” Detection of Glutathione [J]. Analytical Chemistry , 2021 , 93 ( 27 ): 9621 - 9627 . DOI: 10.1021/acs.analchem.1c01787 http://dx.doi.org/10.1021/acs.analchem.1c01787 .
CHEN M , LU Z , LI M , et al . Near-Infrared Emissive Cascaded Artificial Light-Harvesting System with Enhanced Antibacterial Efficiency [J]. Advanced Healthcare Materials , 2023 , 12 ( 23 ): 2300377 . DOI: 10.1002/adhm.202300377 http://dx.doi.org/10.1002/adhm.202300377 .
ZHANG W , LUO Y , JIA M , et al . An efficient supramolecular artificial light-harvesting system based on twisted cucurbit[15]uril and cucurbit[10]uril for live cell imaging [J]. Sensors and Actuators B: Chemical , 2022 , 366 ( 1 ): 132006 . DOI: 10.1016/j.snb.2022.132006 http://dx.doi.org/10.1016/j.snb.2022.132006 .
CHEN X , CAO Q , BISOYI H , et al . An Efficient Near-Infrared Emissive Artificial Supramolecular Light-Harvesting System for Imaging in the Golgi Apparatus [J]. Angewandte Chemie International Edition , 2020 , 59 ( 26 ): 10493 - 10497 . DOI: 10.1002/anie.202003427 http://dx.doi.org/10.1002/anie.202003427 .
HUO M , DAI X , LIU Y , et al . Uncommon Supramolecular Phosphorescence-Capturing Assembly Based on Cucurbit[8]uril-Mediated Molecular Folding for Near-Infrared Lysosome Imaging [J]. Small , 2022 , 18 ( 1 ): 2104514 . DOI: 10.1002/smll.202104514 http://dx.doi.org/10.1002/smll.202104514 .
SONG Y , CAI X , WANG M , et al . Assembly of highly efficient aqueous light-harvesting system from sequence-defined peptoids for cytosolic microRNA detection [J]. Nano Research , 2024 , 17 ( 8 ): 788 - 796 . DOI: 10.1007/s12274-023-6008-0 http://dx.doi.org/10.1007/s12274-023-6008-0 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621