
浏览全部资源
扫码关注微信
南开大学 化学学院 天津 300071
[ "刘定斌,男,教授,博士,博士生导师,国家杰出青年科学基金获得者。近年来,已在生物医学检测和临床诊断领域发表论文110余篇,总影响因子>1 000,论文他引7 000余次,H指数43。近五年作为通讯作者在Proc. Natl. Acad. Sci. U.S.A.,Sci. Adv.,Nat. Commun.,J. Am. Chem. Soc.,Angew. Chem. Int. Ed.等国际知名刊物上发表论文40多篇,多篇论文被选为期刊封面、Hot Paper及ESI高被引论文。申请中国专利12件,已授权9件,并实现7件专利的成果转化;主持科技部国家重点研发计划课题1项、国家自然科学基金杰出青年基金项目1项和面上项目5项(已结题3项)、军委后勤重点项目1项及多项横向课题。Email: liudb@nankai.edu.cn" ]
收稿日期:2024-12-28,
修回日期:2025-02-07,
纸质出版日期:2025-06-25
移动端阅览
苏翕索,刘定斌.细胞外囊泡分离研究进展[J].新兴科学和技术趋势,2025,4(2):208-225.
SU Xisuo,LIU Dingbin.Research progress in extracellular vesicle isolation methods[J].Emerging Science and Technology,2025,4(2):208-225.
苏翕索,刘定斌.细胞外囊泡分离研究进展[J].新兴科学和技术趋势,2025,4(2):208-225. DOI: 10.12405/j.issn.2097-1486.2025.02.008.
SU Xisuo,LIU Dingbin.Research progress in extracellular vesicle isolation methods[J].Emerging Science and Technology,2025,4(2):208-225. DOI: 10.12405/j.issn.2097-1486.2025.02.008.
细胞外囊泡(extracellular vesicle,EV)是由细胞释放的具有磷脂双层膜结构的囊状小泡,大小在30~5 000 nm之间。EV携带母细胞的生物分子信息,通过运输关键的蛋白质、miRNA、mRNA和DNA等生物分子,在细胞通信和表观遗传调控中发挥着重要作用。由于EV所处体液环境十分复杂,来源多样,且其理化性质存在较大的异质性,高效率、高纯度地分离和纯化EV对其下游的生物医学研究和临床应用至关重要。本篇综述将总结不同来源EV的分离分析研究进展,并深入剖析不同方法的优缺点,阐明其应用场景,为各种EV分离技术的应用和进一步开发提供有用信息。
Extracellular vesicle (EV) is phospholipid bilayer membrane vesicle released by cells and its size ranges from 30 to 5 000 nm. EV carries the biomolecular information of the parental cells and plays an important role in cell communication and epigenetic regulation by transporting critical biological cargoes such as proteins, miRNA, mRNA and DNA. Due to the complexity of the body fluid enviroments in which EV is found, their diverse origins, and the great heterogeneity in their physical and chemical properties, efficiently and purely isolating and purifying EV is critical for downstream biomedical research and clinical applications. This review summarizes the research progress of isolating EV from different sources, analyze the advantages and disadvantages of different methods, clarify their application scenarios, and provide useful information for the application and further development of various EV separation technologies.
WELSH J A , GOBERDHAN D C I , O’DRISCOLL L , et al . Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches [J]. J Extracell Vesicles , 2024 , 13 ( 2 ): e12404 . DOI: 10.1002/jev2.12404 http://dx.doi.org/10.1002/jev2.12404 .
CHENG L , HILL A F . Therapeutically harnessing extracellular vesicles [J]. Nature Reviews Drug Discovery , 2022 , 21 ( 5 ): 379 - 399 . DOI: 10.1038/s41573-022-00410-w http://dx.doi.org/10.1038/s41573-022-00410-w .
KALLURI R , LEBLEU V S . The biology, function, and biomedical applications of exosomes [J]. Science , 2020 , 367 ( 6478 ): eaau6977 . DOI: 10.1126/science.aau6977 http://dx.doi.org/10.1126/science.aau6977 .
VAGNER T , CHIN A , MARISCAL J , et al . Protein Composition Reflects Extracellular Vesicle Heterogeneity [J]. Proteomics , 2019 , 19 ( 8 ): e1800167 . DOI: 10.1002/pmic.201800167 http://dx.doi.org/10.1002/pmic.201800167 .
ZABOROWSKI M P , BALAJ L , BREAKEFIELD X O , et al . Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study [J]. Bioscience , 2015 , 65 ( 8 ): 783 - 797 . DOI: 10.1093/biosci/biv084 http://dx.doi.org/10.1093/biosci/biv084 .
XIA Y , ZHANG J , LIU G , et al . Immunogenicity of Extracellular Vesicles [J]. Adv Mater , 2024 , 36 ( 33 ): e2403199 . DOI: 10.1002/adma.202403199 http://dx.doi.org/10.1002/adma.202403199 .
KALLURI R . The biology and function of extracellular vesicles in immune response and immunity [J]. Immunity , 2024 , 57 ( 8 ): 1752 - 1768 . DOI: 10.1016/j.immuni.2024.07.009 http://dx.doi.org/10.1016/j.immuni.2024.07.009 .
BECKER A , THAKUR B K , WEISS J M , et al . Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis [J]. Cancer Cell , 2016 , 30 ( 6 ): 836 - 848 . DOI: 10.1016/j.ccell.2016.10.009 http://dx.doi.org/10.1016/j.ccell.2016.10.009 .
JEPPESEN D K , FENIX A M , FRANKLIN J L , et al . Reassessment of Exosome Composition [J]. Cell , 2019 , 177 ( 2 ): 428 - 445 . DOI: 10.1016/j.cell.2019.02.029 http://dx.doi.org/10.1016/j.cell.2019.02.029 .
KALLURI R , MCANDREWS K M . The role of extracellular vesicles in cancer [J]. Cell , 2023 , 186 ( 8 ): 1610 - 1626 . DOI: 10.1016/j.cell.2023.03.010 http://dx.doi.org/10.1016/j.cell.2023.03.010 .
LI P , KASLAN M , LEE S H , et al . Progress in Exosome Isolation Techniques [J]. Theranostics , 2017 , 7 ( 3 ): 789 - 804 . DOI: 10.7150/thno.18133 http://dx.doi.org/10.7150/thno.18133 .
LI H , LIU Y , LIN Y , et al . Cardiac repair using regenerating neonatal heart tissue-derived extracellular vesicles [J]. Nature Communications , 2025 , 16 ( 1 ): 1292 . DOI: 10.1038/s41467-025-56384-x http://dx.doi.org/10.1038/s41467-025-56384-x .
BIRCH L A . Engineering extracellular vesicles for therapeutic delivery in ischaemic stroke [J]. Nature Reviews Cardiology , 2025 , 22 ( 4 ): 219 . DOI: 10.1038/s41569-025-01122-5 http://dx.doi.org/10.1038/s41569-025-01122-5 .
HAN X , SAENGOW C , JU L , et al . Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing [J]. Nature Communications , 2024 , 15 ( 1 ): 3435 . DOI: 10.1038/s41467-024-47696-5 http://dx.doi.org/10.1038/s41467-024-47696-5 .
YÁÑEZ-MÓ M , SILJANDER P R , ANDREU Z , et al . Biological properties of extracellular vesicles and their physiological functions [J]. J Extracell Vesicles , 2015 , 4 : 27066 . DOI: 10.3402/jev.v4.27066 http://dx.doi.org/10.3402/jev.v4.27066 .
S E L A , MÄGER I , BREAKEFIELD X O , et al . Extracellular vesicles: biology and emerging therapeutic opportunities [J]. Nat Rev Drug Discov , 2013 , 12 ( 5 ): 347 - 357 . DOI: 10.1038/nrd3978 http://dx.doi.org/10.1038/nrd3978 .
TRAN P H L , WANG T , YIN W , et al . Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs [J]. Int J Pharm , 2019 , 566 : 697 - 707 . DOI: 10.1016/j.ijpharm.2019.06.028 http://dx.doi.org/10.1016/j.ijpharm.2019.06.028 .
CHEN Y , DOUANNE N , WU T , et al . Leveraging nature’s nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications [J]. Science Advances , 2025 , 11 ( 9 ): eads5249 . DOI: 10.1126/sciadv.ads5249 http://dx.doi.org/10.1126/sciadv.ads5249 .
SHEN Q , HUANG Z , YAO J , et al . Extracellular vesicles-mediated interaction within intestinal microenvironment in inflammatory bowel disease [J]. J Adv Res , 2022 , 37 : 221 - 233 . DOI: 10.1016/j.jare.2021.07.002 http://dx.doi.org/10.1016/j.jare.2021.07.002 .
DING J Y , CHEN M J , WU L F , et al . Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges [J]. Mil Med Res , 2023 , 10 ( 1 ): 36 . DOI: 10.1186/s40779-023-00472-w http://dx.doi.org/10.1186/s40779-023-00472-w .
FU X , SONG J , YAN W , et al . The biological function of tumor-derived extracellular vesicles on metabolism [J]. Cell Commun Signal , 2023 , 21 ( 1 ): 150 . DOI: 10.1186/s12964-023-01111-6 http://dx.doi.org/10.1186/s12964-023-01111-6 .
SHU S , YANG Y , ALLEN C L , et al . Purity and yield of melanoma exosomes are dependent on isolation method [J]. J Extracell Vesicles , 2020 , 9 ( 1 ): 1692401 . DOI: 10.1080/20013078.2019.1692401 http://dx.doi.org/10.1080/20013078.2019.1692401 .
ZHANG M , JIN K , GAO L , et al . Methods and Technologies for Exosome Isolation and Characterization [J]. Small Methods , 2018 , 2 ( 9 ): 1800021 . DOI: 10.1002/smtd.201800021 http://dx.doi.org/10.1002/smtd.201800021 .
DOYLE L M , WANG M Z . Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis [J]. Cells , 2019 , 8 ( 7 ): 727 . DOI: 10.3390/cells8070727 http://dx.doi.org/10.3390/cells8070727 .
SIMONSEN J B . What Are We Looking At? Extracellular Vesicles, Lipoproteins, or Both? [J]. Circ Res , 2017 , 121 ( 8 ): 920 - 922 . DOI: 10.1161/circresaha.117.311767 http://dx.doi.org/10.1161/circresaha.117.311767 .
IWAI K , YAMAMOTO S , YOSHIDA M , et al . Isolation of Extracellular Vesicles in Saliva Using Density Gradient Ultracentrifugation [J]. Methods Mol Biol , 2017 , 1660 : 343 - 350 . DOI: 10.1007/978-1-4939-7253-1_27 http://dx.doi.org/10.1007/978-1-4939-7253-1_27 .
IWAI K , MINAMISAWA T , SUGA K , et al . Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations [J]. J Extracell Vesicles , 2016 , 5 : 30829 . DOI: 10.3402/jev.v5.30829 http://dx.doi.org/10.3402/jev.v5.30829 .
HE L , ZHU D , WANG J , et al . A highly efficient method for isolating urinary exosomes [J]. Int J Mol Med , 2019 , 43 ( 1 ): 83 - 90 . DOI: 10.3892/ijmm.2018.3944 http://dx.doi.org/10.3892/ijmm.2018.3944 .
MERCHANT M L , POWELL D W , WILKEY D W , et al . Microfiltration isolation of human urinary exosomes for characterization by MS [J]. Proteomics Clinical Applications , 2010 , 4 ( 1 ): 84 - 96 . DOI: 10.1002/prca.200800093 http://dx.doi.org/10.1002/prca.200800093 .
KONOSHENKO M Y , LEKCHNOV E A , VLASSOV A V , et al . Isolation of Extracellular Vesicles: General Methodologies and Latest Trends [J]. Biomed Res Int , 2018 , 2018 : 8545347 . DOI: 10.1155/2018/8545347 http://dx.doi.org/10.1155/2018/8545347 .
MUSUMECI T , LEONARDI A , BONACCORSO A , et al . Tangential Flow Filtration Technique: An Overview on Nanomedicine Applications [J]. Pharm Nanotechnol , 2018 , 6 ( 1 ): 48 - 60 . DOI: 10.2174/2211738506666180306160921 http://dx.doi.org/10.2174/2211738506666180306160921 .
ZENG X , YI X , CHEN L , et al . Characterization and bioassays of extracellular vesicles extracted by tangential flow filtration [J]. Regen Med , 2022 , 17 ( 3 ): 141 - 154 . DOI: 10.2217/rme-2021-0038 http://dx.doi.org/10.2217/rme-2021-0038 .
LEBRETON B , BROWN A , VAN REIS R . Application of high-performance tangential flow filtration (HPTFF) to the purification of a human pharmaceutical antibody fragment expressed in Escherichia coli [J]. Biotechnol Bioeng , 2008 , 100 ( 5 ): 964 - 974 . DOI: 10.1002/bit.21842 http://dx.doi.org/10.1002/bit.21842 .
LATHE G H , RUTHVEN C R . The separation of substances on the basis of their molecular weights, using columns of starch and water [J]. Biochem J , 1955 , 60 ( 4 ): 665 - 674 .
MONDAL S K , WHITESIDE T L . Immunoaffinity-Based Isolation of Melanoma Cell-Derived and T Cell-Derived Exosomes from Plasma of Melanoma Patients [J]. Methods Mol Biol , 2021 , 2265 : 305 - 321 . DOI: 10.1007/978-1-0716-1205-7_23 http://dx.doi.org/10.1007/978-1-0716-1205-7_23 .
GÁMEZ-VALERO A , MONGUIÓ-TORTAJADA M , CARRERAS-PLANELLA L , et al . Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents [J]. Sci Rep , 2016 , 6 : 33641 . DOI: 10.1038/srep33641 http://dx.doi.org/10.1038/srep33641 .
MA C , JIANG F , MA Y , et al . Isolation and Detection Technologies of Extracellular Vesicles and Application on Cancer Diagnostic [J]. Dose Response , 2019 , 17 ( 4 ): 1559325819891004 . DOI: 10.1177/1559325819891004 http://dx.doi.org/10.1177/1559325819891004 .
KASTELOWITZ N , YIN H . Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes [J]. Chembiochem , 2014 , 15 ( 7 ): 923 - 928 . DOI: 10.1002/cbic.201400043 http://dx.doi.org/10.1002/cbic.201400043 .
RUPP A K , RUPP C , KELLER S , et al . Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage [J]. Gynecol Oncol , 2011 , 122 ( 2 ): 437 - 446 . DOI: 10.1016/j.ygyno.2011.04.035 http://dx.doi.org/10.1016/j.ygyno.2011.04.035 .
HUANG T , DENG C X . Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers [J]. Int J Biol Sci , 2019 , 15 ( 1 ): 1 - 11 . DOI: 10.7150/ijbs.27796 http://dx.doi.org/10.7150/ijbs.27796 .
LI Q , ZHANG Z , WANG F , et al . Reversible zwitterionic coordination enables rapid, high-yield, and high-purity isolation of extracellular vesicles from biofluids [J]. Science Advances , 2023 , 9 ( 15 ): eadf4568 . DOI: 10.1126/sciadv.adf4568 http://dx.doi.org/10.1126/sciadv.adf4568 .
SOARES MARTINS T , CATITA J , MARTINS ROSA I , et al . Exosome isolation from distinct biofluids using precipitation and column-based approaches [J]. PLoS One , 2018 , 13 ( 6 ): e0198820 . DOI: 10.1371/journal.pone.0198820 http://dx.doi.org/10.1371/journal.pone.0198820 .
SANTANA S M , ANTONYAK M A , CERIONE R A , et al . Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations [J]. Biomed Microdevices , 2014 , 16 ( 6 ): 869 - 877 . DOI: 10.1007/s10544-014-9891-z http://dx.doi.org/10.1007/s10544-014-9891-z .
NAQUIN T D , CANNING A J , GU Y , et al . Acoustic separation and concentration of exosomes for nucleotide detection: ASCENDx [J]. Sci Adv , 2024 , 10 ( 10 ): eadm8597 . DOI: 10.1126/sciadv.adm8597 http://dx.doi.org/10.1126/sciadv.adm8597 .
WU M , OUYANG Y , WANG Z , et al . Isolation of exosomes from whole blood by integrating acoustics and microfluidics [J]. Proc Natl Acad Sci U S A , 2017 , 114 ( 40 ): 10584 - 10589 . DOI: 10.1073/pnas.1709210114 http://dx.doi.org/10.1073/pnas.1709210114 .
LEE K , SHAO H , WEISSLEDER R , et al . Acoustic purification of extracellular microvesicles [J]. ACS Nano , 2015 , 9 ( 3 ): 2321 - 2327 . DOI: 10.1021/nn506538f http://dx.doi.org/10.1021/nn506538f .
IBSEN S D , WRIGHT J , LEWIS J M , et al . Rapid Isolation and Detection of Exosomes and Associated Biomarkers from Plasma [J]. ACS Nano , 2017 , 11 ( 7 ): 6641 - 6651 . DOI: 10.1021/acsnano.7b00549 http://dx.doi.org/10.1021/acsnano.7b00549 .
SHI L , KUHNELL D , BORRA V J , et al . Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device [J]. Lab Chip , 2019 , 19 ( 21 ): 3726 - 3734 . DOI: 10.1039/c9lc00902g http://dx.doi.org/10.1039/c9lc00902g .
KUMAR K , KIM E , ALHAMMADI M , et al . Recent advances in microfluidic approaches for the isolation and detection of exosomes [J]. TrAC Trends in Analytical Chemistry , 2023 , 159 : 116912 . DOI: 10.1016/j.trac.2022.116912 http://dx.doi.org/10.1016/j.trac.2022.116912 .
XU H , LIAO C , ZUO P , et al . Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes [J]. Anal Chem , 2018 , 90 ( 22 ): 13451 - 13458 . DOI: 10.1021/acs.analchem.8b03272 http://dx.doi.org/10.1021/acs.analchem.8b03272 .
SHAO H , CHUNG J , LEE K , et al . Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma [J]. Nat Commun , 2015 , 6 : 6999 . DOI: 10.1038/ncomms7999 http://dx.doi.org/10.1038/ncomms7999 .
KU A , RAVI N , YANG M , et al . A urinary extracellular vesicle microRNA biomarker discovery pipeline; from automated extracellular vesicle enrichment by acoustic trapping to microRNA sequencing [J]. PLOS ONE , 2019 , 14 ( 5 ): e0217507 . DOI: 10.1371/journal.pone.0217507 http://dx.doi.org/10.1371/journal.pone.0217507 .
REZELI M , GIDLÖF O , EVANDER M , et al . Comparative Proteomic Analysis of Extracellular Vesicles Isolated by Acoustic Trapping or Differential Centrifugation [J]. Analytical Chemistry , 2016 , 88 ( 17 ): 8577 - 8586 . DOI: 10.1021/acs.analchem.6b01694 http://dx.doi.org/10.1021/acs.analchem.6b01694 .
YEH Y T , ZHOU Y , ZOU D , et al . Rapid Size-Based Isolation of Extracellular Vesicles by Three-Dimensional Carbon Nanotube Arrays [J]. ACS Applied Materials & Interfaces , 2020 , 12 ( 11 ): 13134 - 13139 . DOI: 10.1021/acsami.9b20990 http://dx.doi.org/10.1021/acsami.9b20990 .
WANG Z , WU H J , FINE D , et al . Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles [J]. Lab Chip , 2013 , 13 ( 15 ): 2879 - 2882 . DOI: 10.1039/c3lc41343h http://dx.doi.org/10.1039/c3lc41343h .
FENG J , XIU Q , HUANG Y , et al . Plant-Derived Vesicle-Like Nanoparticles as Promising Biotherapeutic Tools: Present and Future [J]. Adv Mater , 2023 , 35 ( 24 ): e2207826 . DOI: 10.1002/adma.202207826 http://dx.doi.org/10.1002/adma.202207826 .
HE B , CAI Q , QIAO L , et al . RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles [J]. Nat Plants , 2021 , 7 ( 3 ): 342 - 352 . DOI: 10.1038/s41477-021-00863-8 http://dx.doi.org/10.1038/s41477-021-00863-8 .
JIN Z , NA J , LIN X , et al . Plant-derived exosome-like nanovesicles: A novel nanotool for disease therapy [J]. Heliyon , 2024 , 10 ( 9 ): e30630 . DOI: 10.1016/j.heliyon.2024.e30630 http://dx.doi.org/10.1016/j.heliyon.2024.e30630 .
SALL I M , FLAVIU T A . Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future [J]. Front Bioeng Biotechnol , 2023 , 11 : 1215650 . DOI: 10.3389/fbioe.2023.1215650 http://dx.doi.org/10.3389/fbioe.2023.1215650 .
DING Y , WANG J , CHUN LAI J H , et al . Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals [J]. Mol Biol Cell , 2014 , 25 ( 3 ): 412 - 426 . DOI: 10.1091/mbc.E13-10-0586 http://dx.doi.org/10.1091/mbc.E13-10-0586 .
WANG J , DING Y , WANG J , et al . EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells [J]. Plant Cell , 2010 , 22 ( 12 ): 4009 - 4030 . DOI: 10.1105/tpc.110.080697 http://dx.doi.org/10.1105/tpc.110.080697 .
CONG M , TAN S , LI S , et al . Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? [J]. Adv Drug Deliv Rev , 2022 , 182 : 114108 . DOI: 10.1016/j.addr.2021.114108 http://dx.doi.org/10.1016/j.addr.2021.114108 .
HATSUGAI N , IWASAKI S , TAMURA K , et al . A novel membrane fusion-mediated plant immunity against bacterial pathogens [J]. Genes Dev , 2009 , 23 ( 21 ): 2496 - 2506 . DOI: 10.1101/gad.1825209 http://dx.doi.org/10.1101/gad.1825209 .
CUI Y , CAO W , HE Y , et al . A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells [J]. Nat Plants , 2019 , 5 ( 1 ): 95 - 105 . DOI: 10.1038/s41477-018-0328-1 http://dx.doi.org/10.1038/s41477-018-0328-1 .
CAO M , DIAO N , CAI X , et al . Plant exosome nanovesicles (PENs): green delivery platforms [J]. Mater Horiz , 2023 , 10 ( 10 ): 3879 - 3894 . DOI: 10.1039/d3mh01030a http://dx.doi.org/10.1039/d3mh01030a .
SIKORSKA N , ZUBER H , GOBERT A , et al . RNA degradation by the plant RNA exosome involves both phosphorolytic and hydrolytic activities [J]. Nat Commun , 2017 , 8 ( 1 ): 2162 . DOI: 10.1038/s41467-017-02066-2 http://dx.doi.org/10.1038/s41467-017-02066-2 .
CHEN A , HE B , JIN H . Isolation of Extracellular Vesicles from Arabidopsis [J]. Curr Protoc , 2022 , 2 ( 1 ): e352 . DOI: 10.1002/cpz1.352 http://dx.doi.org/10.1002/cpz1.352 .
DAD H A , GU T W , ZHU A Q , et al . Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms [J]. Mol Ther , 2021 , 29 ( 1 ): 13 - 31 . DOI: 10.1016/j.ymthe.2020.11.030 http://dx.doi.org/10.1016/j.ymthe.2020.11.030 .
WANG B , ZHUANG X , DENG Z B , et al . Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit [J]. Molecular Therapy , 2014 , 22 ( 3 ): 522 - 534 . DOI: 10.1038/mt.2013.190 http://dx.doi.org/10.1038/mt.2013.190 .
YANG L Y , LI C Q , ZHANG Y L , et al . Emerging Drug Delivery Vectors: Engineering of Plant-Derived Nanovesicles and Their Applications in Biomedicine [J]. Int J Nanomedicine , 2024 , 19 : 2591 - 2610 . DOI: 10.2147/ijn.S454794 http://dx.doi.org/10.2147/ijn.S454794 .
DE ROBERTIS M , SARRA A , D’ORIA V , et al . Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-α-Induced Change on Gene Expression in EA.hy926 Cells [J]. Biomolecules , 2020 , 10 ( 5 ): 742 . DOI: 10.3390/biom10050742 http://dx.doi.org/10.3390/biom10050742 .
ZHAO Q , LIU G , LIU F , et al . An enzyme-based system for extraction of small extracellular vesicles from plants [J]. Scientific Reports , 2023 , 13 ( 1 ): 13931 . DOI: 10.1038/s41598-023-41224-z http://dx.doi.org/10.1038/s41598-023-41224-z .
GARCÍA-ROMERO N , MADURGA R , RACKOV G , et al . Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation [J]. J Transl Med , 2019 , 17 ( 1 ): 75 . DOI: 10.1186/s12967-019-1825-3 http://dx.doi.org/10.1186/s12967-019-1825-3 .
KALARIKKAL S P , PRASAD D , KASIAPPAN R , et al . A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes [J]. Scientific Reports , 2020 , 10 ( 1 ): 4456 . DOI: 10.1038/s41598-020-61358-8 http://dx.doi.org/10.1038/s41598-020-61358-8 .
SURESH A P , KALARIKKAL S P , PULLAREDDY B , et al . Low pH-Based Method to Increase the Yield of Plant-Derived Nanoparticles from Fresh Ginger Rhizomes [J]. ACS Omega , 2021 , 6 ( 27 ): 17635 - 17641 . DOI: 10.1021/acsomega.1c02162 http://dx.doi.org/10.1021/acsomega.1c02162 .
LIU J , LI W , BIAN Y , et al . Garlic-derived exosomes regulate PFKFB3 expression to relieve liver dysfunction in high-fat diet-fed mice via macrophage-hepatocyte crosstalk [J]. Phytomedicine , 2023 , 112 : 154679 . DOI: 10.1016/j.phymed.2023.154679 http://dx.doi.org/10.1016/j.phymed.2023.154679 .
MARTÍNEZ-GREENE J A , HERNÁNDEZ-ORTEGA K , QUIROZ-BAEZ R , et al . Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography [J]. J Extracell Vesicles , 2021 , 10 ( 6 ): e12087 . DOI: 10.1002/jev2.12087 http://dx.doi.org/10.1002/jev2.12087 .
YOU J Y , KANG S J , RHEE W J . Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells [J]. Bioact Mater , 2021 , 6 ( 12 ): 4321 - 4332 . DOI: 10.1016/j.bioactmat.2021.04.023 http://dx.doi.org/10.1016/j.bioactmat.2021.04.023 .
FENG J , XIU Q , HUANG Y , et al . Plant-Derived Vesicle-Like Nanoparticles as Promising Biotherapeutic Tools: Present and Future [J]. Advanced Materials , 2023 , 35 ( 24 ): 2207826 . DOI: 10.1002/adma.202207826 http://dx.doi.org/10.1002/adma.202207826 .
HUANG Y , WANG S , CAI Q , et al . Effective methods for isolation and purification of extracellular vesicles from plants [J]. J Integr Plant Biol , 2021 , 63 ( 12 ): 2020 - 2030 . DOI: 10.1111/jipb.13181 http://dx.doi.org/10.1111/jipb.13181 .
CAI Q , QIAO L , WANG M , et al . Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes [J]. Science , 2018 , 360 ( 6393 ): 1126 - 1129 . DOI: 10.1126/science.aar4142 http://dx.doi.org/10.1126/science.aar4142 .
YANG M , LIU X , LUO Q , et al . An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy [J]. J Nanobiotechnology , 2020 , 18 ( 1 ): 100 . DOI: 10.1186/s12951-020-00656-9 http://dx.doi.org/10.1186/s12951-020-00656-9 .
YANG M , LUO Q , CHEN X , et al . Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma [J]. J Nanobiotechnology , 2021 , 19 ( 1 ): 259 . DOI: 10.1186/s12951-021-00995-1 http://dx.doi.org/10.1186/s12951-021-00995-1 .
WEN M , WANG J , OU Z , et al . Bacterial extracellular vesicles: A position paper by the microbial vesicles task force of the Chinese society for extracellular vesicles [J]. Interdisciplinary Medicine , 2023 , 1 ( 3 ): e20230017 . DOI: 10.1002/INMD.20230017 http://dx.doi.org/10.1002/INMD.20230017 .
SOLER N , MARGUET E , VERBAVATZ J M , et al . Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales [J]. Res Microbiol , 2008 , 159 ( 5 ): 390 - 399 . DOI: 10.1016/j.resmic.2008.04.015 http://dx.doi.org/10.1016/j.resmic.2008.04.015 .
TOYOFUKU M , SCHILD S , KAPARAKIS-LIASKOS M , et al . Composition and functions of bacterial membrane vesicles [J]. Nature Reviews Microbiology , 2023 , 21 ( 7 ): 415 - 430 . DOI: 10.1038/s41579-023-00875-5 http://dx.doi.org/10.1038/s41579-023-00875-5 .
TOYOFUKU M , NOMURA N , EBERL L . Types and origins of bacterial membrane vesicles [J]. Nat Rev Microbiol , 2019 , 17 ( 1 ): 13 - 24 . DOI: 10.1038/s41579-018-0112-2 http://dx.doi.org/10.1038/s41579-018-0112-2 .
GUERRERO-MANDUJANO A , HERNÁNDEZ-CORTEZ C , IBARRA J A , et al . The outer membrane vesicles: Secretion system type zero [J]. Traffic , 2017 , 18 ( 7 ): 425 - 432 . DOI: 10.1111/tra.12488 http://dx.doi.org/10.1111/tra.12488 .
BROWN L , WOLF J M , PRADOS-ROSALES R , et al . Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi [J]. Nat Rev Microbiol , 2015 , 13 ( 10 ): 620 - 630 . DOI: 10.1038/nrmicro3480 http://dx.doi.org/10.1038/nrmicro3480 .
TURNBULL L , TOYOFUKU M , HYNEN A L , et al . Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms [J]. Nat Commun , 2016 , 7 : 11220 . DOI: 10.1038/ncomms11220 http://dx.doi.org/10.1038/ncomms11220 .
LEE E Y , CHOI D S , KIM K P , et al . Proteomics in gram-negative bacterial outer membrane vesicles [J]. Mass Spectrometry Reviews , 2008 , 27 ( 6 ): 535 - 555 . DOI: 10.1002/mas.20175 http://dx.doi.org/10.1002/mas.20175 .
KIM J H , LEE J , PARK J , et al . Gram-negative and Gram-positive bacterial extracellular vesicles [J]. Semin Cell Dev Biol , 2015 , 40 : 97 - 104 . DOI: 10.1016/j.semcdb.2015.02.006 http://dx.doi.org/10.1016/j.semcdb.2015.02.006 .
ZHAO G , JONES MELISSA K . Role of Bacterial Extracellular Vesicles in Manipulating Infection [J]. Infection and Immunity , 2023 , 91 ( 5 ): e0043922 . DOI: 10.1128/iai.00439-22 http://dx.doi.org/10.1128/iai.00439-22 .
BERLEMAN J , AUER M . The role of bacterial outer membrane vesicles for intra- and interspecies delivery [J]. Environ Microbiol , 2013 , 15 ( 2 ): 347 - 354 . DOI: 10.1111/1462-2920.12048 http://dx.doi.org/10.1111/1462-2920.12048 .
KOEPPEN K , HAMPTON T H , JAREK M , et al . A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles [J]. PLoS Pathog , 2016 , 12 ( 6 ): e1005672 . DOI: 10.1371/journal.ppat.1005672 http://dx.doi.org/10.1371/journal.ppat.1005672 .
SJÖSTRÖM A E , SANDBLAD L , UHLIN B E , et al . Membrane vesicle-mediated release of bacterial RNA [J]. Sci Rep , 2015 , 5 : 15329 . DOI: 10.1038/srep15329 http://dx.doi.org/10.1038/srep15329 .
BONNINGTON K E , KUEHN M J . Protein selection and export via outer membrane vesicles [J]. Biochim Biophys Acta , 2014 , 1843 ( 8 ): 1612 - 1619 . DOI: 10.1016/j.bbamcr.2013.12.011 http://dx.doi.org/10.1016/j.bbamcr.2013.12.011 .
ZHENG X , GONG T , LUO W , et al . Fusobacterium nucleatum extracellular vesicles are enriched in colorectal cancer and facilitate bacterial adhesion [J]. Science Advances , 2024 , 10 ( 38 ): eado0016 . DOI: 10.1126/sciadv.ado0016 http://dx.doi.org/10.1126/sciadv.ado0016 .
GURUNATHAN S , KIM J H . Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications [J]. Microb Pathog , 2023 , 183 : 106308 . DOI: 10.1016/j.micpath.2023.106308 http://dx.doi.org/10.1016/j.micpath.2023.106308 .
WANG X , THOMPSON C D , WEIDENMAIER C , et al . Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform [J]. Nat Commun , 2018 , 9 ( 1 ): 1379 . DOI: 10.1038/s41467-018-03847-z http://dx.doi.org/10.1038/s41467-018-03847-z .
TULKENS J , DE WEVER O , HENDRIX A . Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization [J]. Nature Protocols , 2020 , 15 ( 1 ): 40 - 67 . DOI: 10.1038/s41596-019-0236-5 http://dx.doi.org/10.1038/s41596-019-0236-5 .
OISHI S , MIYASHITA M , KISO A , et al . Cellular locations of proteinases and association with vesicles in Porphyromonas gingivalis [J]. Eur J Med Res , 2010 , 15 ( 9 ): 397 - 402 . DOI: 10.1186/2047-783x-15-9-397 http://dx.doi.org/10.1186/2047-783x-15-9-397 .
BAUMAN S J , KUEHN M J . Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response [J]. Microbes and Infection , 2006 , 8 ( 9 ): 2400 - 2408 . DOI: 10.1016/j.micinf.2006.05.001 http://dx.doi.org/10.1016/j.micinf.2006.05.001 .
KLIMENTOVÁ J , STULÍK J . Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria [J]. Microbiological Research , 2015 , 170 : 1 - 9 . DOI: 10.1016/j.micres.2014.09.006 http://dx.doi.org/10.1016/j.micres.2014.09.006 .
WEI S , JIAO D , XING W . A rapid method for isolation of bacterial extracellular vesicles from culture media using epsilon-poly-L-lysine that enables immunological function research [J]. Front Immunol , 2022 , 13 : 930510 . DOI: 10.3389/fimmu.2022.930510 http://dx.doi.org/10.3389/fimmu.2022.930510 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621