
浏览全部资源
扫码关注微信
1.北京大学 药学院化学生物学系 天然药物及仿生药物国家重点实验室,北京 100191
2.北京大学 国家生物医学成像中心,北京 100191
[ "王晶,博士,北京大学药学院研究员,博士生导师,药学院化学生物学系副主任,天然药物及仿生药物全国重点实验室首席研究员,北京大学国家生物医学成像科学中心首席研究员(兼)。入选国家海外高层次人才计划。长期致力于开发高特异性、高灵敏度和高时空分辨率的化学生物学技术(化学标记、组学、生物传感器和成像技术)实现细胞信号分子动态的精准检测和分子机制研究。至今以第一或通讯作者身份在Nat. Chem.,Nat. Biotechnol.,Nat. Protoc.,J. Am. Chem. Soc.,Angew. Chem. Int. Ed.,Biosens. Bioelectron.,ACS Sens.等国际重要学术期刊上发表多篇学术论文。目前担任中国药理学会分析药理学专业委员会委员和青年委员会常委。获得北京大学拜耳研究员奖、医学部青年科技奖等奖励。Email: wangjingsioc@pku.edu.cn" ]
收稿日期:2025-05-06,
修回日期:2025-06-09,
纸质出版日期:2025-06-25
移动端阅览
郝敏,赵子杰,魏庆鹏等.照亮细胞生命活动:基因编码荧光生物传感器的前沿进展[J].新兴科学和技术趋势,2025,4(2):226-238.
HAO Min,ZHAO Zijie,WEI Qingpeng,et al.Illuminating cellular life activities: recent advances in gene-encoded fluorescent biosensors[J].Emerging Science and Technology,2025,4(2):226-238.
郝敏,赵子杰,魏庆鹏等.照亮细胞生命活动:基因编码荧光生物传感器的前沿进展[J].新兴科学和技术趋势,2025,4(2):226-238. DOI: 10.12405/j.issn.2097-1486.2025.02.009.
HAO Min,ZHAO Zijie,WEI Qingpeng,et al.Illuminating cellular life activities: recent advances in gene-encoded fluorescent biosensors[J].Emerging Science and Technology,2025,4(2):226-238. DOI: 10.12405/j.issn.2097-1486.2025.02.009.
细胞功能的精确调控依赖于高度复杂的信号网络系统,中心碳代谢作为细胞代谢的核心枢纽,通过将营养物质转化为生物质和能量前体,维持着生命活动的基本需求。然而,传统生化分析方法难以获取活体系统中代谢物的时空动态信息。基因编码荧光生物传感器的出现突破了这一技术瓶颈,其能够在活细胞及活体水平实现代谢物的快速、灵敏、特异性和实时检测,为代谢调控研究提供了革命性工具。本综述系统总结了近五年来基因编码荧光生物传感器在中心碳代谢研究中的最新进展,重点阐述了我们团队在代谢物动态监测技术方面的创新性突破,包括谷氨酰胺代谢、能量状态和脂质代谢监测系统的开发与应用。
The precise regulation of cellular functions relies on a highly complex signaling network system, with central carbon metabolism serving as the core hub of cellular metabolism. Central carbon metabolism maintains the fundamental requirements for life activities by converting nutrients into biomass and energy precursors. However, traditional biochemical analysis methods face challenges in obtaining spatiotemporal dynamic information of metabolites in living systems. The advent of gene-encoded fluorescent biosensors has overcome this technical bottleneck, enabling rapid, sensitive, specific, and real-time detection of metabolites at both the cellular and in vivo levels. This breakthrough provides revolutionary tools for metabolic regulation research. This review systematically summarizes the latest advances in gene-encoded fluorescent biosensors in central carbon metabolism research over the past five years, with a focus on the innovative breakthroughs made by our team in the development and application of dynamic monitoring systems for metabolites, including systems for monitoring glutamine metabolism, energy status, and lipid metabolism.
VANDER HEIDEN M G , CANTLEY L C , THOMPSON C B . Understanding the Warburg effect: the metabolic requirements of cell proliferation [J]. Science , 2009 , 324 ( 5930 ): 1029 - 1033 . DOI: 10.1126/science.1160809 http://dx.doi.org/10.1126/science.1160809 .
PAVLOVA N N , THOMPSON C B . The Emerging Hallmarks of Cancer Metabolism [J]. Cell Metab , 2016 , 23 ( 1 ): 27 - 47 . DOI: 10.1016/j.cmet.2015.12.006 http://dx.doi.org/10.1016/j.cmet.2015.12.006 .
LUNT S Y , VANDER HEIDEN M G . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation [J]. Annu Rev Cell Dev Biol , 2011 , 27 : 441 - 464 . DOI: 10.1146/annurev-cellbio-092910-154237 http://dx.doi.org/10.1146/annurev-cellbio-092910-154237 .
GRAY L R , TOMPKINS S C , TAYLOR E B . Regulation of pyruvate metabolism and human disease [J]. Cell Mol Life Sci , 2014 , 71 ( 14 ): 2577 - 2604 . DOI: 10.1007/s00018-013-1539-2 http://dx.doi.org/10.1007/s00018-013-1539-2 .
MARTÍNEZ-REYES I , CARDONA L R , KONG H , et al . Mitochondrial ubiquinol oxidation is necessary for tumour growth [J]. Nature , 2020 , 585 ( 7824 ): 288 - 292 . DOI: 10.1038/s41586-020-2475-6 http://dx.doi.org/10.1038/s41586-020-2475-6 .
HARDIE D G , ROSS F A , HAWLEY S A . AMPK: a nutrient and energy sensor that maintains energy homeostasis [J]. Nat Rev Mol Cell Biol , 2012 , 13 ( 4 ): 251 - 262 . DOI: 10.1038/nrm3311 http://dx.doi.org/10.1038/nrm3311 .
PATRA K C , HAY N . The pentose phosphate pathway and cancer [J]. Trends Biochem Sci , 2014 , 39 ( 8 ): 347 - 354 . DOI: 10.1016/j.tibs.2014.06.005 http://dx.doi.org/10.1016/j.tibs.2014.06.005 .
LU S C . Glutathione synthesis [J]. Biochim Biophys Acta , 2013 , 1830 ( 5 ): 3143 - 3153 . DOI: 10.1016/j.bbagen.2012.09.008 http://dx.doi.org/10.1016/j.bbagen.2012.09.008 .
STANTON R C . Glucose-6-phosphate dehydrogenase, NADPH, and cell survival [J]. IUBMB Life , 2012 , 64 ( 5 ): 362 - 369 . DOI: 10.1002/iub.1017 http://dx.doi.org/10.1002/iub.1017 .
XIAO M , YANG H , XU W , et al . Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors [J]. Genes Dev , 2012 , 26 ( 12 ): 1326 - 1338 . DOI: 10.1101/gad.191056.112 http://dx.doi.org/10.1101/gad.191056.112 .
TANNAHILL G M , CURTIS A M , ADAMIK J , et al . Succinate is an inflammatory signal that induces IL-1β through HIF-1α [J]. Nature , 2013 , 496 ( 7444 ): 238 - 242 . DOI: 10.1038/nature11986 http://dx.doi.org/10.1038/nature11986 .
ALTMAN B J , STINE Z E , DANG C V . From Krebs to clinic: glutamine metabolism to cancer therapy [J]. Nat Rev Cancer , 2016 , 16 ( 10 ): 619 - 634 . DOI: 10.1038/nrc.2016.71 http://dx.doi.org/10.1038/nrc.2016.71 .
DANG L , WHITE D W , GROSS S , et al . Cancer-associated IDH1 mutations produce 2-hydroxyglutarate [J]. Nature , 2009 , 462 ( 7274 ): 739 - 744 . DOI: 10.1038/nature08617 http://dx.doi.org/10.1038/nature08617 .
YANG M , SOGA T , POLLARD P J . Oncometabolites: linking altered metabolism with cancer [J]. J Clin Invest , 2013 , 123 ( 9 ): 3652 - 3658 . DOI: 10.1172/jci67228 http://dx.doi.org/10.1172/jci67228 .
CHEN W W , FREINKMAN E , WANG T , et al . Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism [J]. Cell , 2016 , 166 ( 5 ): 1324 - 1337.e11 . DOI: 10.1016/j.cell.2016.07.040 http://dx.doi.org/10.1016/j.cell.2016.07.040 .
DEBERARDINIS R J , CHANDEL N S . Fundamentals of cancer metabolism [J]. Sci Adv , 2016 , 2 ( 5 ): e1600200 . DOI: 10.1126/sciadv.1600200 http://dx.doi.org/10.1126/sciadv.1600200 .
ZHAO Y , HU Q , CHENG F , et al . SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents [J]. Cell Metab , 2015 , 21 ( 5 ): 777 - 789 . DOI: 10.1016/j.cmet.2015.04.009 http://dx.doi.org/10.1016/j.cmet.2015.04.009 .
TANTAMA M , MARTÍNEZ-FRANÇOIS J R , MONGEON R , et al . Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio [J]. Nat Commun , 2013 , 4 ( 1 ): 2550 . DOI: 10.1038/ncomms3550 http://dx.doi.org/10.1038/ncomms3550 .
HUNG Y P , ALBECK J G , TANTAMA M , et al . Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor [J]. Cell Metab , 2011 , 14 ( 4 ): 545 - 554 . DOI: 10.1016/j.cmet.2011.08.012 http://dx.doi.org/10.1016/j.cmet.2011.08.012 .
SAN MARTÍN A , CEBALLO S , RUMINOT I , et al . A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells [J]. PLoS One , 2013 , 8 ( 2 ): e57712 . DOI: 10.1371/journal.pone.0057712 http://dx.doi.org/10.1371/journal.pone.0057712 .
TAO R , ZHAO Y , CHU H , et al . Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism [J]. Nat Methods , 2017 , 14 ( 7 ): 720 - 728 . DOI: 10.1038/nmeth.4306 http://dx.doi.org/10.1038/nmeth.4306 .
HOCHREITER B , GARCIA A P , SCHMID J A . Fluorescent proteins as genetically encoded FRET biosensors in life sciences [J]. Sensors (Basel, Switzerland) , 2015 , 15 ( 10 ): 26281 - 26314 . DOI: 10.3390/s151026281 http://dx.doi.org/10.3390/s151026281 .
ELLIS J M , WOLFGANG M J . A genetically encoded metabolite sensor for malonyl-CoA [J]. Chemistry & biology , 2012 , 19 ( 10 ): 1333 - 1339 . DOI: 10.1016/j.chembiol.2012.08.018 http://dx.doi.org/10.1016/j.chembiol.2012.08.018 .
CAMERON W D , BUI C V , HUTCHINSON A , et al . Apollo-NADP(+): a spectrally tunable family of genetically encoded sensors for NADP(+) [J]. Nature methods , 2016 , 13 ( 4 ): 352 - 358 . DOI: 10.1038/nmeth.3764 http://dx.doi.org/10.1038/nmeth.3764 .
CAMBRONNE X A , STEWART M L , KIM D , et al . Biosensor reveals multiple sources for mitochondrial NAD⁺ [J]. Science (New York, NY) , 2016 , 352 ( 6292 ): 1474 - 1477 . DOI: 10.1126/science.aad5168 http://dx.doi.org/10.1126/science.aad5168 .
BELOUSOV V V , FRADKOV A F , LUKYANOV K A , et al . Genetically encoded fluorescent indicator for intracellular hydrogen peroxide [J]. Nature methods , 2006 , 3 ( 4 ): 281 - 286 . DOI: 10.1038/nmeth866 http://dx.doi.org/10.1038/nmeth866 .
LOBAS M A , TAO R , NAGAI J , et al . A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP [J]. Nature communications , 2019 , 10 ( 1 ): 711 . DOI: 10.1038/s41467-019-08441-5 http://dx.doi.org/10.1038/s41467-019-08441-5 .
TANTAMA M , HUNG Y P , YELLEN G . Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor [J]. J Am Chem Soc , 2011 , 133 ( 26 ): 10034 - 10037 . DOI: 10.1021/ja202902d http://dx.doi.org/10.1021/ja202902d .
LI Y , TSIEN R W . pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity [J]. Nature neuroscience , 2012 , 15 ( 7 ): 1047 - 1053 . DOI: 10.1038/nn.3126 http://dx.doi.org/10.1038/nn.3126 .
MA Y , YAMAMOTO Y , NICOVICH P R , et al . A FRET sensor enables quantitative measurements of membrane charges in live cells [J]. Nature biotechnology , 2017 , 35 ( 4 ): 363 - 370 . DOI: 10.1038/nbt.3828 http://dx.doi.org/10.1038/nbt.3828 .
GREENWALD E C , MEHTA S , ZHANG J . Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks [J]. Chem Rev , 2018 , 118 ( 24 ): 11707 - 11794 . DOI: 10.1021/acs.chemrev.8b00333 http://dx.doi.org/10.1021/acs.chemrev.8b00333 .
GOBET I , LIPPAI M , TOMKOWIAK M , et al . 4-aminopyridine acts as a weak base and a Ca2+ mobilizing agent in triggering oocyte meiosis reinitiation and activation in the Japanese clam Ruditapes philippinarum [J]. The International journal of developmental biology , 1995 , 39 ( 3 ): 485 - 491 .
VILLA J K , TRAN H A , VIPANI M , et al . Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids [J]. Molecules (Basel, Switzerland) , 2017 , 22 ( 7 ): 1194 . DOI: 10.3390/molecules22071194 http://dx.doi.org/10.3390/molecules22071194 .
BAIRD G S , ZACHARIAS D A , TSIEN R Y . Circular permutation and receptor insertion within green fluorescent proteins [J]. Proc Natl Acad Sci U S A , 1999 , 96 ( 20 ): 11241 - 11246 . DOI: 10.1073/pnas.96.20.11241 http://dx.doi.org/10.1073/pnas.96.20.11241 .
CHEN T W , WARDILL T J , SUN Y , et al . Ultrasensitive fluorescent proteins for imaging neuronal activity [J]. Nature , 2013 , 499 ( 7458 ): 295 - 300 . DOI: 10.1038/nature12354 http://dx.doi.org/10.1038/nature12354 .
DANA H , MOHAR B , SUN Y , et al . Sensitive red protein calcium indicators for imaging neural activity [J]. Elife , 2016 , 5 : 1 - 24 . DOI: 10.7554/eLife.12727 http://dx.doi.org/10.7554/eLife.12727 .
SHANER N C , CAMPBELL R E , STEINBACH P A , et al . Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein [J]. Nat Biotechnol , 2004 , 22 ( 12 ): 1567 - 1572 . DOI: 10.1038/nbt1037 http://dx.doi.org/10.1038/nbt1037 .
JARES-ERIJMAN E A , JOVIN T M . FRET imaging [J]. Nat Biotechnol , 2003 , 21 ( 11 ): 1387 - 1395 . DOI: 10.1038/nbt896 http://dx.doi.org/10.1038/nbt896 .
PILJIC A , SCHULTZ C . Simultaneous recording of multiple cellular events by FRET [J]. ACS Chem Biol , 2008 , 3 ( 3 ): 156 - 160 . DOI: 10.1021/cb700247q http://dx.doi.org/10.1021/cb700247q .
VANDERKLISH P W , KRUSHEL L A , HOLST B H , et al . Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer [J]. Proc Natl Acad Sci U S A , 2000 , 97 ( 5 ): 2253 - 2258 . DOI: 10.1073/pnas.040565597 http://dx.doi.org/10.1073/pnas.040565597 .
BEREZIN M Y , ACHILEFU S . Fluorescence lifetime measurements and biological imaging [J]. Chem Rev , 2010 , 110 ( 5 ): 2641 - 2684 . DOI: 10.1021/cr900343z http://dx.doi.org/10.1021/cr900343z .
WALLRABE H , PERIASAMY A . Imaging protein molecules using FRET and FLIM microscopy [J]. Curr Opin Biotechnol , 2005 , 16 ( 1 ): 19 - 27 . DOI: 10.1016/j.copbio.2004.12.002 http://dx.doi.org/10.1016/j.copbio.2004.12.002 .
NOBIS M , MCGHEE E J , MORTON J P , et al . Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer [J]. Cancer Res , 2013 , 73 ( 15 ): 4674 - 4686 . DOI: 10.1158/0008-5472.CAN-12-4545 http://dx.doi.org/10.1158/0008-5472.CAN-12-4545 .
KELLER J P , MARVIN J S , LACIN H , et al . In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor [J]. Cell Rep , 2021 , 35 ( 12 ): 109284 . DOI: 10.1016/j.celrep.2021.109284 http://dx.doi.org/10.1016/j.celrep.2021.109284 .
MITA M , SUGAWARA I , HARADA K , et al . Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics [J]. Cell Chem Biol , 2022 , 29 ( 1 ): 98 - 108 e4 . DOI: 10.1016/j.chembiol.2021.06.002 http://dx.doi.org/10.1016/j.chembiol.2021.06.002 .
ZHONG C , ARAI S , OKADA Y . Development of fluorescence lifetime biosensors for ATP, cAMP, citrate, and glucose using the mTurquoise2-based platform [J]. Cell Rep Methods , 2024 , 4 ( 11 ): 100902 . DOI: 10.1016/j.crmeth.2024.100902 http://dx.doi.org/10.1016/j.crmeth.2024.100902 .
YANG L , JIA C , XIE B , et al . Lighting up Pyruvate Metabolism in Saccharomyces cerevisiae by a Genetically Encoded Fluorescent Biosensor [J]. J Agric Food Chem , 2024 , 72 ( 3 ): 1651 - 1659 . DOI: 10.1021/acs.jafc.3c08724 http://dx.doi.org/10.1021/acs.jafc.3c08724 .
ARCE-MOLINA R , CORTES-MOLINA F , SANDOVAL P Y , et al . A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC [J]. Elife , 2020 , 9 : e53917 . DOI: 10.7554/eLife.53917 http://dx.doi.org/10.7554/eLife.53917 .
IMAI S , HARIO S , SUERTE C , et al . High-performance genetically-encoded green and red fluorescent biosensors for pyruvate [J/OL]. bioRxiv , ( 2025-04-17 )[ 2025-05-12 ]. https://doi.org/10.1101/2025.04.17.649293 https://doi.org/10.1101/2025.04.17.649293 .
HARIO S , LE G N T , SUGIMOTO H , et al . High-Performance Genetically Encoded Green Fluorescent Biosensors for Intracellular l-Lactate [J]. ACS Cent Sci , 2024 , 10 ( 2 ): 402 - 416 . DOI: 10.1021/acscentsci.3c01250 http://dx.doi.org/10.1021/acscentsci.3c01250 .
NASU Y , AGGARWAL A , LE G N T , et al . Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging [J]. Nat Commun , 2023 , 14 ( 1 ): 6598 . DOI: 10.1038/s41467-023-42230-5 http://dx.doi.org/10.1038/s41467-023-42230-5 .
BEKDASH R , QUEJADA J R , UENO S , et al . GEM-IL: A highly responsive fluorescent lactate indicator [J]. Cell Rep Methods , 2021 , 1 ( 7 ): 100092 . DOI: 10.1016/j.crmeth.2021.100092 http://dx.doi.org/10.1016/j.crmeth.2021.100092 .
ABURTO C , GALAZ A , BERNIER A , et al . Single-Fluorophore Indicator to Explore Cellular and Sub-cellular Lactate Dynamics [J]. ACS Sens , 2022 , 7 ( 11 ): 3278 - 3286 . DOI: 10.1021/acssensors.2c00731 http://dx.doi.org/10.1021/acssensors.2c00731 .
LI X , ZHANG Y , XU L , et al . Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease [J]. Cell Metab , 2023 , 35 ( 1 ): 200 - 211 . DOI: 10.1016/j.cmet.2022.10.002 http://dx.doi.org/10.1016/j.cmet.2022.10.002 .
KOVEAL D , ROSEN P C , MEYER D J , et al . A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors [J]. Nat Commun , 2022 , 13 ( 1 ): 2919 . DOI: 10.1038/s41467-022-30685-x http://dx.doi.org/10.1038/s41467-022-30685-x .
GALAZ A , CORTES-MOLINA F , ARCE-MOLINA R , et al . Imaging of the Lactate/Pyruvate Ratio Using a Genetically Encoded Forster Resonance Energy Transfer Indicator [J]. Anal Chem , 2020 , 92 ( 15 ): 10643 - 10650 . DOI: 10.1021/acs.analchem.0c01741 http://dx.doi.org/10.1021/acs.analchem.0c01741 .
RICKS N J , BRACHI M , MCFADDEN K , et al . Development of Malate Biosensor-Containing Hydrogels and Living Cell-Based Sensors [J]. Int J Mol Sci , 2024 , 25 ( 20 ). DOI: 10.3390/ijms252011098 http://dx.doi.org/10.3390/ijms252011098 .
ZHAO Y , SHEN Y , WEN Y , et al . High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate [J]. ACS Cent Sci , 2020 , 6 ( 8 ): 1441 - 1450 . DOI: 10.1021/acscentsci.0c00518 http://dx.doi.org/10.1021/acscentsci.0c00518 .
SMITH J J , VALENTINO T R , ABLICKI A H , et al . A genetically encoded fluorescent biosensor for visualization of acetyl-CoA in live cells [J]. Cell Chem Biol , 2025 , 32 ( 2 ): 325 - 337 . DOI: 10.1101/2023.12.31.573774 http://dx.doi.org/10.1101/2023.12.31.573774 .
RANZAU B L , ROBINSON T D , SCULLY J M , et al . A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA [J]. ACS Bio Med Chem Au , 2025 , 5 ( 1 ): 184 - 193 . DOI: 10.1021/acsbiomedchemau.4c00103 http://dx.doi.org/10.1021/acsbiomedchemau.4c00103 .
WANG W , WEI Q , ZHANG J , et al . A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long-Chain Fatty Acyl-CoA Esters Metabolism [J]. Angew Chem Int Ed Engl , 2021 , 60 ( 25 ): 13996 - 14004 . DOI: 10.1002/anie.202101731 http://dx.doi.org/10.1002/anie.202101731 .
WANG W , WANG P , ZHU L , et al . An optimized fluorescent biosensor for monitoring long-chain fatty acyl-CoAs metabolism in vivo [J]. Biosens Bioelectron , 2024 , 247 : 115935 . DOI: 10.1016/j.bios.2023.115935 http://dx.doi.org/10.1016/j.bios.2023.115935 .
LIU B , ZHAO Z , WANG P , et al . GlutaR: A High-Performance Fluorescent Protein-Based Sensor for Spatiotemporal Monitoring of Glutamine Dynamics In Vivo [J]. Angew Chem Int Ed Engl , 2025 , 64 ( 4 ): e202416608 . DOI: 10.1002/anie.202416608 http://dx.doi.org/10.1002/anie.202416608 .
AGGARWAL A , LIU R , CHEN Y , et al . Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission [J]. Nat Methods , 2023 , 20 ( 6 ): 925 - 934 . DOI: 10.1038/s41592-023-01863-6 http://dx.doi.org/10.1038/s41592-023-01863-6 .
STEINBECK J , FUCHS P , NEGRONI Y L , et al . In Vivo NADH/NAD(+) Biosensing Reveals the Dynamics of Cytosolic Redox Metabolism in Plants [J]. Plant Cell , 2020 , 32 ( 10 ): 3324 - 3345 . DOI: 10.1105/tpc.20.00241 http://dx.doi.org/10.1105/tpc.20.00241 .
ZOU Y , WANG A , HUANG L , et al . Illuminating NAD(+) Metabolism in Live Cells and In Vivo Using a Genetically Encoded Fluorescent Sensor [J]. Dev Cell , 2020 , 53 ( 2 ): 240 - 252 . DOI: 10.1016/j.devcel.2020.02.017 http://dx.doi.org/10.1016/j.devcel.2020.02.017 .
SCHERSCHEL M , NIEMEIER J O , JACOBS L , et al . A family of NADPH/NADP(+) biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes [J]. Nat Commun , 2024 , 15 ( 1 ): 10704 . DOI: 10.1038/s41467-024-55302-x http://dx.doi.org/10.1038/s41467-024-55302-x .
XIAO L , WANG X , LIU D , et al . Genetically Encoded Single-Wavelength Sensor with High Specificity for Imaging ATP in Living Cells [J]. ACS Sens , 2025 , 10 ( 2 ): 1398 - 1406 . DOI: 10.1021/acssensors.4c03389 http://dx.doi.org/10.1021/acssensors.4c03389 .
MARVIN J S , KOKOTOS A C , KUMAR M , et al . iATPSnFR2: A high-dynamic-range fluorescent sensor for monitoring intracellular ATP [J]. Proc Natl Acad Sci U S A , 2024 , 121 ( 21 ): e2314604121 . DOI: 10.1073/pnas.2314604121 http://dx.doi.org/10.1073/pnas.2314604121 .
ARAI S , ITOH H , VU C Q , et al . qMaLioffG: A single green fluorescent protein FLIM indicator enabling quantitative imaging of endogenous ATP [J]. bioRxiv , ( 2023-08-31 )[ 2025-05-14 ]. https://doi.org/10.1101/2023.08.29.555275 https://doi.org/10.1101/2023.08.29.555275 .
ZHANG M , YANG B , ZHANG J , et al . Monitoring the Dynamic Regulation of the Mitochondrial GTP-to-GDP Ratio with a Genetically Encoded Fluorescent Biosensor [J]. Angew Chem Int Ed Engl , 2022 , 61 ( 33 ): e202201266 . DOI: 10.1002/anie.202201266 http://dx.doi.org/10.1002/anie.202201266 .
LI X , WEI Q , ZHAO K , et al . Monitoring Intracellular IP6 with a Genetically Encoded Fluorescence Biosensor [J]. ACS Sens , 2023 , 8 ( 12 ): 4484 - 4493 . DOI: 10.1021/acssensors.3c00268 http://dx.doi.org/10.1021/acssensors.3c00268 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621