1.国家纳米科学中心,北京 100190
2.山西大学 化学生物学与分子工程教育部重点实验室,分子科学研究所,山西 太原 030006
[ "陈春英,女,中国科学院院士、发展中国家科学院院士,国家纳米科学中心研究员,博士生导师,新基石研究员。先后担任国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项首席科学家。长期从事生物体系纳米材料的分析化学及其化学生物学效应研究,围绕典型医用纳米材料的结构性质、化学生物学行为、纳米-生物界面作用机制等关键瓶颈问题进行深入研究,探索在疫苗佐剂与药物递送等领域的突破性应用,为纳米生物医学应用研究提供理论支持,得到了国际同行的关注与认可。在Nat. Nanotechnol.,Nat. Protoc.,Nat. Methods,Nat. Commun.,PNAS,JACS等期刊发表论文400余篇,被引用>5.3万次,H指数122(Google学术)。应邀担任ISO、WHO和OECD专家,担任ACS Nano执行主编及多个期刊编委。先后两次获得国家自然科学奖二等奖,荣获全国三八红旗手、全国五一巾帼标兵、IUPAC化学化工杰出女性奖、TWAS化学奖、RSC Environment Prize、ACS Bioconjugate Chemistry讲座奖、中国青年女科学家奖等。Email: chenchy@nanoctr.cn" ]
收稿:2025-06-27,
修回:2025-08-12,
纸质出版:2025-09-25
移动端阅览
田杨,阴彩霞,陈春英.基于智能响应型前药递送系统的肿瘤诊疗一体化策略研究进展[J].新兴科学和技术趋势,2025,4(3):239-257.
TIAN Yang,YIN Caixia,CHEN Chunying.Research progress on integrated strategy of the theranostics of tumor based on intelligent responsive prodrug delivery systems[J].Emerging Science and Technology,2025,4(3):239-257.
田杨,阴彩霞,陈春英.基于智能响应型前药递送系统的肿瘤诊疗一体化策略研究进展[J].新兴科学和技术趋势,2025,4(3):239-257. DOI: 10.12405/j.issn.2097-1486.2025.03.001.
TIAN Yang,YIN Caixia,CHEN Chunying.Research progress on integrated strategy of the theranostics of tumor based on intelligent responsive prodrug delivery systems[J].Emerging Science and Technology,2025,4(3):239-257. DOI: 10.12405/j.issn.2097-1486.2025.03.001.
化疗作为恶性肿瘤临床治疗领域的主流手段,在当代肿瘤综合治疗体系中具有不可替代的临床价值。但是当前化疗药物存在以下关键局限性:首先,其理化性质表现为普遍水溶性不佳,且缺乏肿瘤组织靶向性;其次,在药代动力学方面存在系统清除快、生物利用度低的问题,同时伴随显著的毒性反应;更重要的是,长期化疗会诱导肿瘤细胞产生多药耐药性,这已成为导致化疗方案失效的首要机制。针对以上局限性,前药递送系统作为一种新型的解决方案应运而生。该递送策略通可以明显增强药物溶解性、延长血液半衰期、实现肿瘤靶向递送。而且该策略支持多药共载,实现协同治疗。这种多维度优化使得化疗疗效获得系统性提升。尽管前药递送系统提升了传统药物的利用率,但该系统也面临着难以向肿瘤深处渗透,细胞摄取困难以及药物释放不完全等弊端。为此,当前研究热点聚焦于智能响应型前药递送系统的开发并经过功能调控来实现精准给药:(1)在体循环阶段维持结构完整性,确保药物封装稳定性,保护药物不被漏释;(2)通过感知肿瘤微环境特征参数(pH、活性氧水平、生物酶表达水平等因素)引发结构改变,从而区分肿瘤组织和正常组织,并释放药物,降低对正常组织的毒副作用;(3)动态调控递送系统的理化性质(表面电荷分布、粒径尺寸、分子拓扑结构等),从而同步优化肿瘤组织渗透性、细胞摄取效率及可控制释放的药代动力学。这种智能响应型递送系统有效突破了传统化疗药物的生物屏障限制。本文回顾了智能响应型前药递送系统在肿瘤诊疗一体化研究中的进展,并对该领域的未来发展趋势做了展望。
Chemotherapy, as the mainstream therapeutic modality in clinical oncology, remains clinically irreplaceable in the contemporary multimodal cancer management frameworks. However, current chemotherapeutic agents have the following critical limitations: Firstly, their physicochemical characteristic includes unfavorable aqueous solubility and inadequate tumor-specific targeting capabilities; secondly, pharmacokinetic limitations are revealed in accelerated systemic clearance and diminished bioavailability with marked cytotoxic sequelae. Notably, long-term chemotherapy triggers the development of multidrug-resistant phenotypes in malignant tumor, which has become the primary mechanism of the failure of chemotherapy. To overcome the clinical limitations of chemotherapeutic agents, prodrug delivery systems have emerged as an innovative solution. This delivery strategy increases aqueous solubility, extends half-life of plasma, realizes tumor-targeted accumulation and enables synergistic treatment by co-delivery of multi-drug. This multidimensional optimization leads to a systematic improvement in chemotherapy efficacy. Although prodrug delivery systems have improved the utilization rate of traditional drugs, they have some drawbacks such as the difficulty in deeper tumor penetration depth, the difficulty in cellular uptake, and the incomplete release of drug. Therefore, the current research focuses on the development of intelligent responsive prodrug delivery systems and the precise drug-delivery through functional regulation: (1) In the systemic circulation phase, maintaining structural integrity ensures drug encapsulation stability and prevents premature drug leakage; (2) Drug delivery systems can distinguish tumor tissues from normal tissues by sensing characteristic parameters of the tumor microenvironment, such as pH, reactive oxygen species and enzyme expression levels, thereby triggering structural transformations to release drugs and reduce toxicity toward normal tissues; (3) Dynamic regulation of the physicochemical properties of prodrug delivery systems (surface charge distribution, particle size, and molecular topology) enables simultaneous optimization of tumor tissue penetration, cellular uptake efficiency, and controlled-release pharmacokinetics. This intelligent responsive prodrug delivery systems effectively overcomes the biological barrier limitations of traditional chemotherapy drugs. This review systematically summarizes the advancements of intelligent responsive prodrug delivery systems in the theranostics of tumor and provides insights into the future development trends of this field.
WU X , TIAN Y , YU M , et al . A targetable acid-responsive micellar system for signal activation based high performance surgical resolution of tumors [J]. Biomaterials science , 2014 , 2 ( 7 ): 972 - 979 . DOI: 10.1039/c4bm00007b http://dx.doi.org/10.1039/c4bm00007b .
LAMBERT A W , PATTABIRAMAN D R , WEINBERG R A . Emerging biological principles of metastasis [J]. Cell , 2017 , 168 ( 4 ): 670 - 691 . DOI: 10.1016/j.cell.2016.11.037 http://dx.doi.org/10.1016/j.cell.2016.11.037 .
FORASTIERE A A , GOEPFERT H , MAOR M , et al . Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer [J]. New England Journal of Medicine , 2003 , 349 ( 22 ): 2091 - 2098 . DOI: 10.1056/nejmoa031317 http://dx.doi.org/10.1056/nejmoa031317 .
DEVITA JR V T , CHU E . A history of cancer chemotherapy [J]. Cancer research , 2008 , 68 ( 21 ): 8643 - 8653 . DOI: 10.1158/0008-5472.can-07-6611 http://dx.doi.org/10.1158/0008-5472.can-07-6611 .
IWAMOTO T . Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs [J]. Biological and pharmaceutical bulletin , 2013 , 36 ( 5 ): 715 - 718 . DOI: 10.1248/bpb.b12-01102 http://dx.doi.org/10.1248/bpb.b12-01102 .
LUAN T , CHENG L , CHENG J , et al . Tailored design of an ROS-responsive drug release platform for enhanced tumor therapy via “sequential induced activation processes” [J]. ACS applied materials & interfaces , 2019 , 11 ( 29 ): 25654 - 25663 . DOI: 10.1021/acsami.9b01433 http://dx.doi.org/10.1021/acsami.9b01433 .
CHENG R , MENG F , DENG C , et al . Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery [J]. Biomaterials , 2013 , 34 ( 14 ): 3647 - 3657 . DOI: 10.1016/j.biomaterials.2013.01.084 http://dx.doi.org/10.1016/j.biomaterials.2013.01.084 .
MONSUEZ J J , CHARNIOT J C , VIGNAT N , et al . Cardiac side-effects of cancer chemotherapy [J]. International journal of cardiology , 2010 , 144 ( 1 ): 3 - 15 . DOI: 10.1016/j.ijcard.2010.03.003 http://dx.doi.org/10.1016/j.ijcard.2010.03.003 .
XU G , MCLEOD H L . Strategies for enzyme/prodrug cancer therapy [J]. Clinical Cancer Research , 2001 , 7 ( 11 ): 3314 - 3324 .
CHEN S , PENG W , YAO H , et al . Reactive cysteines in proteins are the dominant reductants for platinum (Ⅳ) prodrug activation in live cells [J]. Angewandte Chemie International Edition , 2025 , 64 ( 25 ): e202416396 . DOI: 10.1002/anie.202416396 http://dx.doi.org/10.1002/anie.202416396 .
SHEN J , XU B , ZHENG Y , et al . Near-Infrared light-responsive immunomodulator prodrugs rejuvenating immune microenvironment for “cold” tumor photoimmunotherapy [J]. Angewandte Chemie International Edition , 2025 , 64 ( 22 ): e202425309 . DOI: 10.1002/anie.202425309 http://dx.doi.org/10.1002/anie.202425309 .
ZHANG Z , ZHANG J , TIAN J , et al . A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1) [J]. Journal of nanobiotechnology , 2021 , 19 : 1 - 15 . DOI: 10.1186/s12951-021-01063-4 http://dx.doi.org/10.1186/s12951-021-01063-4 .
WEI B , MA Y . Synergistic effect of GF9 and streptomycin on relieving gram-negative bacteria-induced sepsis [J]. Frontiers in Bioengineering and Biotechnology , 2022 , 10 : 973588 . DOI: 10.3389/fbioe.2022.973588 http://dx.doi.org/10.3389/fbioe.2022.973588 .
LUO L , QI Y , ZHONG H , et al . GSH-sensitive polymeric prodrug: synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine [J]. Acta Pharmaceutica Sinica B , 2022 , 12 ( 1 ): 424 - 436 . DOI: 10.1016/j.apsb.2021.05.003 http://dx.doi.org/10.1016/j.apsb.2021.05.003 .
LIU C , YAN J , WU M , et al . Self-Immolative cationic iridium (Ⅲ) complex-encapsulated nanoprodrug for enhanced chemo-photodynamic synergistic therapy of melanomas [J]. Journal of the American Chemical Society , 2025 , 147 ( 31 ): 27812 - 27821 . DOI: 10.1021/jacs.5c06657 http://dx.doi.org/10.1021/jacs.5c06657 .
ZHAO J , LI X , MA T , et al . Glutathione‐triggered prodrugs: Design strategies, potential applications, and perspectives [J]. Medicinal Research Reviews , 2024 , 44 ( 3 ): 1013 - 1054 . DOI: 10.1002/med.22007 http://dx.doi.org/10.1002/med.22007 .
CHEN P W , ZHANG Y M , LI L S , et al . A hypoxia-activated nano prodrug for enhanced chemotherapy and photodynamic synergistic therapy with minimized chemotherapy side effect [J]. Materials Today Chemistry , 2025 , 48 : 102932 . DOI: 10.1016/j.mtchem.2025.102932 http://dx.doi.org/10.1016/j.mtchem.2025.102932 .
KUMAR R , SHIN W S , SUNWOO K , et al . Small conjugate-based theranostic agents: an encouraging approach for cancer therapy [J]. Chemical Society Reviews , 2015 , 44 ( 19 ): 6670 - 6683 . DOI: 10.1039/c5cs00224a http://dx.doi.org/10.1039/c5cs00224a .
LIANG P Z , REN L L , YAN Y H , et al . Activatable photosensitizer prodrug for self-amplified immune therapy via pyroptosis [J]. Angewandte Chemie International Edition , 2025 , 137 ( 9 ): e202419376 . DOI: 10.1002/anie.202419376 http://dx.doi.org/10.1002/anie.202419376 .
ZHANG T , YANG B , JIANG T , et al . A hypoxia-activated BODIPY-Azo anticancer prodrug for bimodal chemo-photodynamic therapy [J]. Journal of Medicinal Chemistry , 2025 , 68 ( 3 ): 3020 - 3030 . DOI: 10.1021/acs.jmedchem.4c02231 http://dx.doi.org/10.1021/acs.jmedchem.4c02231 .
BHUNIYA S , LEE M H , JEON H M , et al . A fluorescence off-on reporter for real time monitoring of gemcitabine delivery to the cancer cells [J]. Chemical Communications , 2013 , 49 ( 64 ): 7141 - 7143 . DOI: 10.1039/c3cc42653j http://dx.doi.org/10.1039/c3cc42653j .
YE M , WANG X , TANG J , et al . Dual-channel NIR activatable theranostic prodrug for in vivo spatiotemporal tracking thiol-triggered chemotherapy [J]. Chemical Science , 2016 , 7 ( 8 ): 4958 - 4965 . DOI: 10.1039/c6sc00970k http://dx.doi.org/10.1039/c6sc00970k .
LEE M H , KIM E J , LEE H , et al . Acid-triggered release of doxorubicin from a hydrazone-linked Gd 3+ -texaphyrin conjugate [J]. Chemical Communications , 2016 , 52 ( 69 ): 10551 - 10554 . DOI: 10.1039/c6cc05673c http://dx.doi.org/10.1039/c6cc05673c .
WU C , WEI H , SHI S , et al . A smart cascade theranostic prodrug system activated by hydrogen peroxide for podophyllotoxin delivery [J]. Journal of Materials Chemistry B , 2025 , 13 ( 6 ): 2067 - 2073 . DOI: 10.1039/d4tb02182g http://dx.doi.org/10.1039/d4tb02182g .
LIU F , LIU L , WEI P , et al . A reactive oxygen species-triggerable theranostic prodrug system [J]. Journal of Controlled Release , 2024 , 376 : 961 - 971 . DOI: 10.1016/j.jconrel.2024.10.054 http://dx.doi.org/10.1016/j.jconrel.2024.10.054 .
QIN Y , LIU N , WANG F , et al . Self-amplifying ROS-responsive SN38 prodrug nanoparticles for combined chemotherapy and ferroptosis in cancer treatment [J]. Carbon , 2025 , 235 : 120099 . DOI: 10.1016/j.carbon.2025.120099 http://dx.doi.org/10.1016/j.carbon.2025.120099 .
BADIRUJJAMAN M , THUMMER R P , BHABAK K P . Esterase-Responsive self-immolative prodrugs for the sustained delivery of the anticancer drug 5-fluorouracil with turn-on fluorescence [J]. Chemistry-An Asian Journal , 2025 , 20 ( 2 ): e202400846 . DOI: 10.1002/asia.202400846 http://dx.doi.org/10.1002/asia.202400846 .
YUAN J , ZHOU Q H , XU S , et al . Enhancing the release efficiency of a molecular chemotherapeutic prodrug by photodynamic therapy [J]. Angewandte Chemie International Edition , 2022 , 61 ( 33 ): e202206169 . DOI: 10.1002/anie.202206169 http://dx.doi.org/10.1002/anie.202206169 .
LI S Y , LIU L H , JIA H Z , et al . A pH-responsive prodrug for real-time drug release monitoring and targeted cancer therapy [J]. Chemical Communications , 2014 , 50 ( 80 ): 11852 - 11855 . DOI: 10.1039/c4cc05008h http://dx.doi.org/10.1039/c4cc05008h .
FENG W , GAO C , LIU W , et al . A novel anticancer theranostic pro-prodrug based on hypoxia and photo sequential control [J]. Chemical Communications , 2016 , 52 ( 60 ): 9434 - 9437 . DOI: 10.1039/c6cc02932a http://dx.doi.org/10.1039/c6cc02932a .
VINEBERG J G , WANG T , ZUNIGA E S , et al . Design, synthesis, and biological evaluation of theranostic vitamin-linker-Taxoid conjugates [J]. Journal of medicinal chemistry , 2015 , 58 ( 5 ): 2406 - 2416 . DOI: 10.1021/jm5019115 http://dx.doi.org/10.1021/jm5019115 .
LIU P , XU J , YAN D , et al . A DT-diaphorase responsive theranostic prodrug for diagnosis, drug release monitoring and therapy [J]. Chemical Communications , 2015 , 51 ( 46 ): 9567 - 9570 . DOI: 10.1039/c5cc02149a http://dx.doi.org/10.1039/c5cc02149a .
DAS M , MOHANTY C , SAHOO S K . Ligand-based targeted therapy for cancer tissue [J]. Expert opinion on drug delivery , 2009 , 6 ( 3 ): 285 - 304 . DOI: 10.1517/17425240902780166 http://dx.doi.org/10.1517/17425240902780166 .
PARVEEN S , SAHOO S K . Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs [J]. Clinical pharmacokinetics , 2006 , 45 : 965 - 988 . DOI: 10.2165/00003088-200645100-00002 http://dx.doi.org/10.2165/00003088-200645100-00002 .
PARVEEN S , SAHOO S K . Polymeric nanoparticles for cancer therapy [J]. Journal of drug targeting , 2008 , 16 ( 2 ): 108 - 123 . DOI: 10.1080/10611860701794353 http://dx.doi.org/10.1080/10611860701794353 .
ZHOU W , LIU Y , LIU G , et al . Glycosylated AIE-active red light-triggered photocage with precisely tumor targeting capability for synergistic type I photodynamic therapy and CPT chemotherapy [J]. Angewandte Chemie International Edition , 2025 , 64 ( 1 ): e202413350 . DOI: 10.1002/anie.202413350 http://dx.doi.org/10.1002/anie.202413350 .
YANG K , SHA Q , LI X , et al . An esterase-activated prodrug against pancreatic cancer by imaging-guided photodynamic immunotherapy [J]. Biomaterials Science , 2025 , 13 ( 8 ): 2092 - 2101 . DOI: 10.1039/d4bm01718h http://dx.doi.org/10.1039/d4bm01718h .
D’ACUNTO M . Detection of intracellular gold nanoparticles: an overview [J]. Materials , 2018 , 11 ( 6 ): 882 . DOI: 10.3390/ma11060882 http://dx.doi.org/10.3390/ma11060882 .
ZHAN J , CAI Y , CHENG P , et al . Body fluid diagnostics using activatable optical probes [J]. Chemical Society Reviews , 2025 , 54 : 3906 - 3929 . DOI: 10.1039/d4cs01315h http://dx.doi.org/10.1039/d4cs01315h .
LIU S , DONG W , GAO H , et al . Near-Infrared-Ⅱ fluorescent probes for analytical applications: from in vitro detection to in vivo imaging monitoring [J]. Accounts of Chemical Research , 2025 , 58 ( 4 ): 543 - 554 . DOI: 10.1021/acs.accounts.4c00671 http://dx.doi.org/10.1021/acs.accounts.4c00671 .
LI T , YANG Z C , WANG Z Q , et al . A tumor-targeting dual-modal imaging probe for nitroreductase in vivo [J]. Bioorganic Chemistry , 2024 , 149 : 107531 . DOI: 10.1016/j.bioorg.2024.107531 http://dx.doi.org/10.1016/j.bioorg.2024.107531 .
LI L , LIAO Y , FU S , et al . Efficient hydroxyl radical generation of an activatable phthalocyanine photosensitizer: oligomer higher than monomer and nanoaggregate [J]. Chemical Science , 2024 , 15 ( 28 ): 10980 - 10988 . DOI: 10.1039/d4sc02179g http://dx.doi.org/10.1039/d4sc02179g .
VELLARD M . The enzyme as drug: application of enzymes as pharmaceuticals [J]. Current opinion in biotechnology , 2003 , 14 ( 4 ): 444 - 450 . DOI: 10.1016/s0958-1669(03)00092-2 http://dx.doi.org/10.1016/s0958-1669(03)00092-2 .
BAIG M H , ADIL M , KHAN R , et al . Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy [C]// Seminars in cancer biology , 2019 , 56 : 1 - 11 . DOI: 10.1016/j.semcancer.2017.12.003 http://dx.doi.org/10.1016/j.semcancer.2017.12.003 .
XIAO M , SUN W , FAN J , et al . Aminopeptidase‐N‐activated theranostic prodrug for NIR tracking of local tumor chemotherapy [J]. Advanced Functional Materials , 2018 , 28 ( 47 ): 1805128 . DOI: 10.1002/adfm.201805128 http://dx.doi.org/10.1002/adfm.201805128 .
PENG X , GAO J , YUAN Y , et al . Hypoxia-activated and indomethacin-mediated theranostic prodrug releasing drug on-demand for tumor imaging and therapy [J]. Bioconjugate Chemistry , 2019 , 30 ( 11 ): 2828 - 2843 . DOI: 10.1021/acs.bioconjchem.9b00564 http://dx.doi.org/10.1021/acs.bioconjchem.9b00564 .
KAWANISHI S , HIRAKU Y , PINLAOR S , et al . Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis [J]. Biological Chemistry , 2006 , 387 ( 4 ): 365 - 372 . DOI: 10.1515/bc.2006.049 http://dx.doi.org/10.1515/bc.2006.049 .
BRANDON M , BALDI P , WALLACE D . Mitochondrial mutations in cancer [J]. Oncogene , 2006 , 25 ( 34 ): 4647 - 4662 . DOI: 10.1038/sj.onc.1209607 http://dx.doi.org/10.1038/sj.onc.1209607 .
HORN H , VOUSDEN K . Coping with stress: multiple ways to activate p53 [J]. Oncogene , 2007 , 26 ( 9 ): 1306 - 1316 . DOI: 10.1038/sj.onc.1210263 http://dx.doi.org/10.1038/sj.onc.1210263 .
XU X , SAW P E , TAO W , et al . ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy [J]. Advanced materials , 2017 , 29 ( 33 ): 1700141 . DOI: 10.1002/adma.201700141 http://dx.doi.org/10.1002/adma.201700141 .
DENG Z , QIAN Y , YU Y , et al . Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells [J]. Journal of the American Chemical Society , 2016 , 138 ( 33 ): 10452 - 10466 . DOI: 10.1021/jacs.6b04115 http://dx.doi.org/10.1021/jacs.6b04115 .
KIM E J , BHUNIYA S , LEE H , et al . An activatable prodrug for the treatment of metastatic tumors [J]. Journal of the American Chemical Society , 2014 , 136 ( 39 ): 13888 - 13894 . DOI: 10.1021/ja5077684 http://dx.doi.org/10.1021/ja5077684 .
LIU H W , HU X X , LI K , et al . A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy [J]. Chemical Science , 2017 , 8 ( 11 ): 7689 - 7695 . DOI: 10.1039/c7sc03454g http://dx.doi.org/10.1039/c7sc03454g .
KANG Y F , NIU L Y , YANG Q Z . Fluorescent probes for detection of biothiols based on “aromatic nucleophilic substitution-rearrangement” mechanism [J]. Chinese Chemical Letters , 2019 , 30 ( 10 ): 1791 - 1798 . DOI: 10.1016/j.cclet.2019.08.013 http://dx.doi.org/10.1016/j.cclet.2019.08.013 .
ZHANG X , LIU C , CHEN Y , et al . Visualization of the cysteine level during Golgi stress using a novel Golgi-targeting highly specific fluorescent probe [J]. Chemical Communications , 2020 , 56 ( 12 ): 1807 - 1810 . DOI: 10.1039/c9cc08796f http://dx.doi.org/10.1039/c9cc08796f .
GUY J , CARON K , DUFRESNE S , et al . Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: elucidation of the maleimide fluorescence quenching mechanism [J]. Journal of the American Chemical Society , 2007 , 129 ( 39 ): 11969 - 11977 . DOI: 10.1021/ja0738125 http://dx.doi.org/10.1021/ja0738125 .
DING C , CHEN C , ZENG X , et al . Emerging strategies in stimuli-responsive prodrug nanosystems for cancer therapy [J]. ACS nano , 2022 , 16 ( 9 ): 13513 - 13553 . DOI: 10.1021/acsnano.2c05379 http://dx.doi.org/10.1021/acsnano.2c05379 .
KONG F , LIANG Z , LUAN D , et al . A glutathione (GSH)-responsive near-infrared (NIR) theranostic prodrug for cancer therapy and imaging [J]. Analytical chemistry , 2016 , 88 ( 12 ): 6450 - 6456 . DOI: 10.1021/acs.analchem.6b01135 http://dx.doi.org/10.1021/acs.analchem.6b01135 .
YANG Z , LEE J H , JEON H M , et al . Folate-based near-infrared fluorescent theranostic gemcitabine delivery [J]. Journal of the American Chemical Society , 2013 , 135 ( 31 ): 11657 - 11662 . DOI: 10.1021/ja405372k http://dx.doi.org/10.1021/ja405372k .
BROWN J M , WILSON W R . Exploiting tumour hypoxia in cancer treatment [J]. Nature Reviews Cancer , 2004 , 4 ( 6 ): 437 - 447 . DOI: 10.1038/nrc1367 http://dx.doi.org/10.1038/nrc1367 .
HARRIS A L . Hypoxia-a key regulatory factor in tumour growth [J]. Nature reviews cancer , 2002 , 2 ( 1 ): 38 - 47 . DOI: 10.1038/nrc704 http://dx.doi.org/10.1038/nrc704 .
LEE P , CHANDEL N S , SIMON M C . Cellular adaptation to hypoxia through hypoxia inducible factors and beyond [J]. Nature reviews Molecular cell biology , 2020 , 21 ( 5 ): 268 - 283 . DOI: 10.1038/s41580-020-0227-y http://dx.doi.org/10.1038/s41580-020-0227-y .
KUNZ M , IBRAHIM S M . Molecular responses to hypoxia in tumor cells [J]. Molecular cancer , 2003 , 2 : 1 - 13 . DOI: 10.1186/1476-4598-2-23 http://dx.doi.org/10.1186/1476-4598-2-23 .
ZBAIDA S , LEVINE W G . A novel application of cyclic voltammetry for direct investigation of metabolic intermediates in microsomal azo reduction [J]. Chemical research in toxicology , 1991 , 4 ( 1 ): 82 - 88 . DOI: 10.1021/tx00019a011 http://dx.doi.org/10.1021/tx00019a011 .
YANG Y , ZHANG Y , WU Q , et al . Clinical implications of high NQO1 expression in breast cancers [J]. Journal of Experimental & Clinical Cancer Research , 2014 , 33 : 1 - 9 . DOI: 10.1186/1756-9966-33-14 http://dx.doi.org/10.1186/1756-9966-33-14 .
WILSON W R , HAY M P . Targeting hypoxia in cancer therapy [J]. Nature Reviews Cancer , 2011 , 11 ( 6 ): 393 - 410 . DOI: 10.1038/nrc3064 http://dx.doi.org/10.1038/nrc3064 .
SAHU A , KWON I , TAE G . Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia [J]. Biomaterials , 2020 , 228 : 119578 . DOI: 10.1016/j.biomaterials.2019.119578 http://dx.doi.org/10.1016/j.biomaterials.2019.119578 .
LIU Y , JIANG Y , ZHANG M , et al . Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors [J]. Accounts of Chemical Research , 2018 , 51 ( 10 ): 2502 - 2511 . DOI: 10.1021/acs.accounts.8b00214 http://dx.doi.org/10.1021/acs.accounts.8b00214 .
XIONG J , CHI W , YE M , et al . Activatable phototherapeutic prodrug conquering hypoxia limitation to enhance chemical drug delivery efficiency [J]. ACS Materials Letters , 2024 , 6 : 2548 - 2558 . DOI: 10.1021/acsmaterialslett.4c00750 http://dx.doi.org/10.1021/acsmaterialslett.4c00750 .
VERWILST P , HAN J , LEE J , et al . Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study [J]. Biomaterials , 2017 , 115 : 104 - 114 . DOI: 10.1016/j.biomaterials.2016.11.023 http://dx.doi.org/10.1016/j.biomaterials.2016.11.023 .
LI B , LIU P , YAN D , et al . A self-immolative and DT-diaphorase-activatable prodrug for drug-release tracking and therapy [J]. Journal of Materials Chemistry B , 2017 , 5 ( 14 ): 2635 - 2643 . DOI: 10.1039/c7tb00266a http://dx.doi.org/10.1039/c7tb00266a .
ZHOU Y , MAITI M , SHARMA A , et al . Azo-based small molecular hypoxia responsive theranostic for tumor-specific imaging and therapy [J]. Journal of Controlled Release , 2018 , 288 : 14 - 22 . DOI: 10.1016/j.jconrel.2018.08.036 http://dx.doi.org/10.1016/j.jconrel.2018.08.036 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621