南京林业大学 材料科学与工程学院,江苏 南京 210037
[ "刘志鹏,男,现任南京林业大学教授,博士研究生导师,功能发光材料课题组组长,江苏省“333高层次人才培养工程”中青年科学技术带头人,青海省“昆仑英才·高端创业人才”项目柔性引进拔尖人才。主要研究领域为小分子探针,包括:开发具有活体高时空分辨成像能力的分子探针,实现金属相关信号分子的高时空在体分析,阐释其器官间信号传递功能和调控机制。至今,以第一或通信作者发文共80余篇,以通信作者在包括J. Am. Soc. Chem.,Angew. Chem., Sci. Adv.,Nat. Commun.,Chem. Soc. Rev.在内的高影响力期刊发表研究论文80余篇;授权中国专利8件。主持国家自然科学基金项目3项、省部级科研项目2项,作为技术负责人参与国家重点研发项目1项。曾获山东省化学化工学会科学技术三等奖;担任中国化学会Chinese Chemical Letters期刊编委会委员,美国化学会Chemical & Biomedical Imaging期刊Early Career Advisory Board(ECAB)成员。Email:zpliu@njfu.edu.cn" ]
收稿:2025-07-11,
修回:2025-08-16,
纸质出版:2025-09-25
移动端阅览
梁晓晴,刘志鹏.NIR-II吸收型小分子光热剂及光热治疗应用研究进展[J].新兴科学和技术趋势,2025,4(3):258-269.
LIANG Xiaoqing,LIU Zhipeng.Recent advances in NIR-II absorbing small-molecule photothermal agents for photothermal therapy[J].Emerging Science and Technology,2025,4(3):258-269.
梁晓晴,刘志鹏.NIR-II吸收型小分子光热剂及光热治疗应用研究进展[J].新兴科学和技术趋势,2025,4(3):258-269. DOI: 10.12405/j.issn.2097-1486.2025.03.002.
LIANG Xiaoqing,LIU Zhipeng.Recent advances in NIR-II absorbing small-molecule photothermal agents for photothermal therapy[J].Emerging Science and Technology,2025,4(3):258-269. DOI: 10.12405/j.issn.2097-1486.2025.03.002.
近红外二区(NIR-II,1 000~1 700 nm)有机小分子光热剂凭借其可调的光物理特性、结构修饰灵活性、高光热转换效率、良好的生物相容性以及卓越的组织穿透能力,在深部肿瘤治疗等生物医学领域展现出巨大应用潜力。本文综述了最近几年来多种具有代表性的NIR-II吸收型小分子光热剂的研究进展,重点聚焦于花菁类、苯并双噻二唑类及氟硼二吡咯类等分子平台的结构设计策略与性能调控机制。通过比较π共轭扩展、电荷转移增强、J-聚集构建等不同设计路径对分子光热性能(包括吸收波长调控、光热转换效率提升、光稳定性增强及水溶性改善)的影响,揭示了分子在激发态能级调控与光热功能之间的内在关系,此外,本文还探讨了小分子光热材料在纳米封装、生物靶向、影像引导治疗等方向的集成化发展趋势,分析了其在临床转化过程中所面临的挑战,并展望了未来在精准肿瘤光热治疗中的应用前景。
Near-infrared II (NIR-II, 1 000~1 700 nm) organic small-molecule photothermal agents (PTAs) have demonstrated remarkable potential in deep-tissue tumor therapy of biomedical field with their tunable photophysical properties, structural versatility, high photothermal conversion efficiency, excellent biocompatibility, and superior tissue penetration capability. This review systematically summarizes recent advances in representative NIR-II absorbing small-molecule PTAs, with a focus on the structure-design strategies and performance-regulation mechanisms of the molecular platforms, including cyanines, benzobisthiadiazoles, and boron-dipyrromethenes. Various molecular engineering approaches, including π-conjugation extension, charge-transfer enhancement, and J-aggregate construction, etc. are compared to elucidate their influence on key performance metrics, including absorption wavelength modulation, photothermal conversion efficiency, photostability, and aqueous solubility. These comparisons highlight the intrinsic relationship between excited-state energy-level regulation and photothermal functionality. Furthermore, this paper discusses the integrated development trends in nanoparticle encapsulation, biological targeting, and image-guided therapy. It also analyzes the existing challenges in clinical practice and projects future applications in precision photothermal oncology.
SIEGEL R L , MILLER K D , WAGLE N S , et al . Cancer statistics, 2023 [J]. CA: A Cancer Journal for Clinicians , 2023 , 73 ( 1 ): 17 - 48 . DOI: 10.3322/caac.21763 http://dx.doi.org/10.3322/caac.21763 .
JUNG H S , VERWILST P , SHARMA A , et al . Organic molecule-based photothermal agents: an expanding photothermal therapy universe [J]. Chemical Society Reviews , 2018 , 47 ( 7 ): 2280 - 2297 . DOI: 10.1039/C7CS00522A http://dx.doi.org/10.1039/C7CS00522A .
LIU Y , BHATTARAI P , DAI Z , et al . Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer [J]. Chemical Society Reviews , 2019 , 48 ( 7 ): 2053 - 2108 . DOI: 10.1039/C8CS00618K http://dx.doi.org/10.1039/C8CS00618K .
LI J , PU K . Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation [J]. Chemical Society Reviews , 2019 , 48 ( 1 ): 38 - 71 . DOI: 10.1039/C8CS00001H http://dx.doi.org/10.1039/C8CS00001H .
HUO J , JIA Q , HUANG H , et al . Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections [J]. Chemical Society Reviews , 2021 , 50 ( 15 ): 8762 - 8789 . DOI: 10.1039/D1CS00074H http://dx.doi.org/10.1039/D1CS00074H .
GOBIN A M , WATKINS E M , QUEVEDO E , et al . Near-Infrared-Resonant Gold/Gold Sulfide Nanoparticles as a Photothermal Cancer Therapeutic Agent [J]. Small , 2010 , 6 ( 6 ): 745 - 752 . DOI: 10.1002/smll.200901557 http://dx.doi.org/10.1002/smll.200901557 .
HAN H S , CHOI K Y , LEE H , et al . Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation [J]. ACS Nano , 2016 , 10 ( 12 ): 10858 - 10868 . DOI: 10.1021/acsnano.6b05113 http://dx.doi.org/10.1021/acsnano.6b05113 .
LIU S , PAN X , LIU H . Two-Dimensional Nanomaterials for Photothermal Therapy [J]. Angewandte Chemie International Edition , 2020 , 59 ( 15 ): 5890 - 5900 . DOI: 10.1002/anie.201911477 http://dx.doi.org/10.1002/anie.201911477 .
ZHANG H , YANG M , WU Q , et al . Engineering Two-Dimensional Nanomaterials for Photothermal Therapy [J]. Angewandte Chemie International Edition , 2025 , n/a(n/a): e 202424768 . DOI: 10.1002/anie.202424768 http://dx.doi.org/10.1002/anie.202424768 .
MOON H K , LEE S H , CHOI H C . In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes [J]. ACS Nano , 2009 , 3 ( 11 ): 3707 - 3713 . DOI: 10.1021/nn900904h http://dx.doi.org/10.1021/nn900904h .
WU M-C , DEOKAR A R , LIAO J-H , et al . Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria [J]. ACS Nano , 2013 , 7 ( 2 ): 1281 - 1290 . DOI: 10.1021/nn304782d http://dx.doi.org/10.1021/nn304782d .
LI B , YE K , ZHANG Y , et al . Photothermal Theragnosis Synergistic Therapy Based on Bimetal Sulphide Nanocrystals Rather Than Nanocomposites [J]. Advanced Materials , 2015 , 27 ( 8 ): 1339 - 1345 . DOI: 10.1002/adma.201404257 http://dx.doi.org/10.1002/adma.201404257 .
BIAN Y , HU T , ZHAO K , et al . A LDH-Derived Metal Sulfide Nanosheet-Functionalized Bioactive Glass Scaffold for Vascularized Osteogenesis and Periprosthetic Infection Prevention/Treatment [J]. Advanced Science , 2024 , 11 ( 39 ): 2403009 . DOI: 10.1002/advs.202403009 http://dx.doi.org/10.1002/advs.202403009 .
JIANG Y , UPPUTURI P K , XIE C , et al . Metabolizable Semiconducting Polymer Nanoparticles for Second Near-Infrared Photoacoustic Imaging [J]. Advanced Materials , 2019 , 31 ( 11 ): 1808166 . DOI: 10.1002/adma.201808166 http://dx.doi.org/10.1002/adma.201808166 .
LIU Y , LIU J , CHEN D , et al . Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging [J]. Angewandte Chemie International Edition , 2020 , 59 ( 47 ): 21049 - 21057 . DO I: 10.1002/anie.202007886 http://dx.doi.org/10.1002/anie.202007886 .
SHENG Z , HU D , XUE M , et al . Indocyanine Green Nanoparticles for Theranostic Applications [J]. Nano-Micro Letters , 2013 , 5 ( 3 ): 145 - 150 . DOI: 10.1007/BF03353743 http://dx.doi.org/10.1007/BF03353743 .
LI Z , LI Z , RAMOS A , et al . Detection of pancreatic cancer by indocyanine green-assisted fluorescence imaging in the first and second near-infrared windows [J]. Cancer Communications , 2021 , 41 ( 12 ): 1431 - 1434 . DOI: 10.1002/cac2.12236 http://dx.doi.org/10.1002/cac2.12236 .
XIA W L , RAN X Y , XIE K P , et al . Optimized indocyanine green nanopreparations for biomedical applications [J]. Coordination Chemistry Reviews , 2025 , 528 : 216422 . DOI: 10.1016/j.ccr.2024.216422 http://dx.doi.org/10.1016/j.ccr.2024.216422 .
SHAN W , CHEN R , ZHANG Q , et al . Improved Stable Indocyanine Green (ICG)-Mediated Cancer Optotheranostics with Naturalized Hepatitis B Core Particles [J]. Advanced Materials , 2018 , 30 ( 28 ): 1707567 . DOI: 10.1002/adma.201707567 http://dx.doi.org/10.1002/adma.201707567 .
KWON N , JASINEVICIUS G O , KASSAB G , et al . Nanostructure-Driven Indocyanine Green Dimerization Generates Ultra-Stable Phototheranostics Nanoparticles [J]. Angewandte Chemie International Edition , 2023 , 62 ( 28 ): e202305564 . DOI: 10.1002/anie.202305564 http://dx.doi.org/10.1002/anie.202305564 .
JIANG J , HU J , LI M , et al . NIR-II Fluorescent Thermophoretic Nanomotors for Superficial Tumor Photothermal Therapy [J]. Advanced Materials , 2025 , 37 ( 10 ): 2417440 . DOI: 10.1002/adma.202417440 http://dx.doi.org/10.1002/adma.202417440 .
MU X , LU Y , WU F , et al . Supramolecular Nanodiscs Self-Assembled from Non-Ionic Heptamethine Cyanine for Imaging-Guided Cancer Photothermal Therapy [J]. Advanced Materials , 2020 , 32 ( 2 ): 1906711 . DOI: 10.1002/adma.201906711 http://dx.doi.org/10.1002/adma.201906711 .
YANG C , GUO L , ZHANG K , et al . Diradical-Featured Organic Small-Molecule Photothermal Material Based on 4,6-di(2-thienyl)thieno[3,4-c][1,2,5]thiadiazole for Photothermal Immunotherapy [J]. Advanced Functional Materials , 2023 , 33 ( 52 ): 2306360 . DOI: 10.1002/adfm.202306360 http://dx.doi.org/10.1002/adfm.202306360 .
CHENG H B , CAO X , ZHANG S , et al . BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications [J]. Advanced Materials , 2023 , 35 ( 18 ): 2207546 . DOI: 10.1002/adma.202207546 http://dx.doi.org/10.1002/adma.202207546 .
LI T , LI C , RUAN Z , et al . Polypeptide-Conjugated Second Near-Infrared Organic Fluorophore for Image-Guided Photothermal Therapy [J]. ACS Nano , 2019 , 13 ( 3 ): 3691 - 3702 . DOI: 10.1021/acsnano.9b00452 http://dx.doi.org/10.1021/acsnano.9b00452 .
TENG C , DANG H , ZHANG S , et al . J-aggregates of Br- and piperazine-modified cyanine dye with the assistance of amphiphilic polypeptides for efficient NIR-IIa phototheranostics under 1 064 nm irradiation [J]. Acta Biomaterialia , 2022 , 154 : 572 - 582 . DOI: 10.1016/j.actbio.2022.10.025 http://dx.doi.org/10.1016/j.actbio.2022.10.025 .
LI S , DENG Q , ZHANG Y , et al . Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIR-II Biowindow [J]. Advanced Materials , 2020 , 32 ( 33 ): 2001146 . DOI: 10.1002/adma.202001146 http://dx.doi.org/10.1002/adma.202001146 .
WANG X , JIANG Z , LIANG Z , et al . Discovery of BODIPY J-aggregates with absorption maxima beyond 1 200 nm for biophotonics [J]. Science Advances , 8 ( 48 ): eadd5660 . DOI: 10.1126/sciadv.add5660 http://dx.doi.org/10.1126/sciadv.add5660 .
WANG Z , LIU Y , HE C , et al . Small-Molecule Phototheranostic Agent with Extended π-Conjugation for Efficient NIR-II Photoacoustic-Imaging-Guided Photothermal Therapy [J]. Small , 2024 , 20 ( 17 ): 2307829 . DOI: 10.1002/smll.202307829 http://dx.doi.org/10.1002/smll.202307829 .
MISHRA A , BEHERA R K , BEHERA P K , et al . Cyanines during the 1990s: A Review [J]. Chemical Reviews , 2000 , 100 ( 6 ): 1973 - 2012 . DOI: 10.1021/cr990402t http://dx.doi.org/10.1021/cr990402t .
COSCO E D , CARAM J R , BRUNS O T , et al . Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging [J]. Angewandte Chemie International Edition , 2017 , 56 ( 42 ): 13126 - 13129 . DOI: 10.1002/anie.201706974 http://dx.doi.org/10.1002/anie.201706974 .
LI B , LU L , ZHAO M , et al . An Efficient 1 064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging [J]. Angewandte Chemie International Edition , 2018 , 57 ( 25 ): 7483 - 7487 . DOI: 10.1002/anie.201801226 http://dx.doi.org/10.1002/anie.201801226 .
LI B , LIU H , HE Y , et al . A “Self-Checking” pH/Viscosity-Activatable NIR-II Molecule for Real-Time Evaluation of Photothermal Therapy Efficacy [J]. Angewandte Chemie International Edition , 2022 , 61 ( 16 ): e202200025 . DOI: 10.1002/anie.202200025 http://dx.doi.org/10.1002/anie.202200025 .
DU B , LIU R , QU C , et al . J-aggregates albumin-based NIR-II fluorescent dye nanoparticles for cancer phototheranostics [J]. Materials Today Bio , 2022 , 16 : 100366 . DOI: 10.1016/j.mtbio.2022.100366 http://dx.doi.org/10.1016/j.mtbio.2022.100366 .
XU J , ZHENG X , REN T B , et al . Recent advances in near-infrared-II organic J-aggregates for bio-applications [J]. Coordination Chemistry Reviews , 2025 , 528 : 216379 . DOI: 10.1016/j.ccr.2024.216379 http://dx.doi.org/10.1016/j.ccr.2024.216379 .
CHEN W , CHENG C A , COSCO E D , et al . Shortwave Infrared Imaging with J-Aggregates Stabilized in Hollow Mesoporous Silica Nanoparticles [J]. Journal of the American Chemical Society , 2019 , 141 ( 32 ): 12475 - 12480 . DOI: 10.1021/jacs.9b05195 http://dx.doi.org/10.1021/jacs.9b05195 .
GU H , LIU W , LI H , et al . 2,1,3-Benzothiadiazole derivative AIEgens for smart phototheranostics [J]. Coordination Chemistry Reviews , 2022 , 473 : 214803 . DOI: 10.1016/j.ccr.2022.214803 http://dx.doi.org/10.1016/j.ccr.2022.214803 .
ANTARIS A L , CHEN H , CHENG K , et al . A small-molecule dye for NIR-II imaging [J]. Nature Materials , 2016 , 15 ( 2 ): 235 - 242 . DOI: 10.1038/nmat4476 http://dx.doi.org/10.1038/nmat4476 .
FANG Y , SHANG J , LIU D , et al . Design, Synthesis, and Application of a Small Molecular NIR-II Fluorophore with Maximal Emission beyond 1 200 nm [J]. Journal of the American Chemical Society , 2020 , 142 ( 36 ): 15271 - 15275 . DOI: 10.1021/jacs.0c08187 http://dx.doi.org/10.1021/jacs.0c08187 .
CHEN P , QU F , CHEN S , et al . Bandgap Modulation and Lipid Intercalation Generates Ultrabright D-A-D-Based Zwitterionic Small-Molecule Nanoagent for Precise NIR-II Excitation Phototheranostic Applications [J]. Advanced Functional Materials , 2022 , 32 ( 52 ): 2208463 . DOI: 10.1002/adfm.202208463 http://dx.doi.org/10.1002/adfm.202208463 .
HU Z , FENG L , YANG P . 2, 1, 3-Benzothiadiazole Derivative Small Molecule Fluorophores for NIR-II Bioimaging [J]. Advanced Functional Materials , 2024 , 34 ( 16 ): 2310818 . DOI: 10.1002/adfm.202310818 http://dx.doi.org/10.1002/adfm.202310818 .
YAN D , ZHANG Z , ZHANG J , et al . An All-Rounder for NIR-II Phototheranostics: Well-Tailored 1 064 nm-Excitable Molecule for Photothermal Combating of Orthotopic Breast Cancer [J]. Angewandte Chemie International Edition , 2024 , 63 ( 26 ): e202401877 . DOI: 10.1002/anie.202401877 http://dx.doi.org/10.1002/anie.202401877 .
HE Z , GAO Y , HUANG Z , et al . Tuning the Near-Infrared J-Aggregate of a Multicationic Photosensitizer through Molecular Coassembly for Symbiotic Photothermal Therapy and Chemotherapy [J]. ACS Nano , 2025 , 19 ( 10 ): 10220 - 10231 . DOI: 10.1021/acsnano.4c17582 http://dx.doi.org/10.1021/acsnano.4c17582 .
KANG M , ZHANG Z , SONG N , et al . Aggregation-enhanced theranostics: AIE sparkles in biomedical field [J]. Aggregate , 2020 , 1 ( 1 ): 80 - 106 . DOI: 10.1002/agt2.7 http://dx.doi.org/10.1002/agt2.7 .
TREIBS A , KREUZER F-H . Difluorboryl-Komplexe von Di- und Tripyrrylmethenen [J]. Justus Liebigs Annalen der Chemie , 1968 , 718 ( 1 ): 208 - 223 . DOI: 10.1002/jlac.19687180119 http://dx.doi.org/10.1002/jlac.19687180119 .
LU H , MACK J , YANG Y , et al . Structural modification strategies for the rational design of red/NIR region BODIPYs [J]. Chemical Society Reviews , 2014 , 43 ( 13 ): 4778 - 4823 . DOI: 10.1039/C4CS00030G http://dx.doi.org/10.1039/C4CS00030G .
JIANG Z , ZHANG C , WANG X , et al . A Borondifluoride-Complex-Based Photothermal Agent with an 80% Photothermal Conversion Efficiency for Photothermal Therapy in the NIR-II Window [J]. Angewandte Chemie International Edition , 2021 , 60 ( 41 ): 22376 - 22384 . DOI: 10.1002/anie.202107836 http://dx.doi.org/10.1002/anie.202107836 .
YANG M , OU X , LI J , et al . BF2-Bridged Azafulvene Dimer-Based 1 064 nm Laser-Driven Superior Photothermal Agent for Deep-Seated Tumor Therapy [J]. Angewandte Chemie International Edition , 2024 , 63 ( 34 ): e202407307 . DOI: 10.1002/anie.202407307 http://dx.doi.org/10.1002/anie.202407307 .
SHI Z , BAI H , WU J , et al . Acceptor Engineering Produces Ultrafast Nonradiative Decay in NIR-II Aza-BODIPY Nanoparticles for Efficient Osteosarcoma Photothermal Therapy via Concurrent Apoptosis and Pyroptosis [J]. Research , 2023 , 6 : 0169 . DOI: 10.34133/research.0169 http://dx.doi.org/10.34133/research.0169 .
XIANG H , ZHAO L , YU L , et al . Self-assembled organic nanomedicine enables ultrastable photo-to-heat converting theranostics in the second near-infrared biowindow [J]. Nature Communications , 2021 , 12 ( 1 ): 218 . DOI: 10.1038/s41467-020-20566-6 http://dx.doi.org/10.1038/s41467-020-20566-6 .
LIU Y Z , RAN X Y , ZHOU D H , et al . Novel Dibenzofulvene-Based NIR-II Emission Phototheranostic Agent with an 82.6% Photothermal Conversion Efficiency for Photothermal Therapy [J]. Advanced Functional Materials , 2024 , 34 ( 8 ): 2311365 . DOI: 10.1002/adfm.202311365 http://dx.doi.org/10.1002/adfm.202311365 .
WU Z H , PENG M , JI C , et al . A Terrylene-Anthraquinone Dyad as a Chromophore for Photothermal Therapy in the NIR-II Window [J]. Journal of the American Chemical Society , 2023 , 145 ( 48 ): 26487 - 26493 . DOI: 10.1021/jacs.3c11314 http://dx.doi.org/10.1021/jacs.3c11314 .
MAURYA Y K , CHMIELEWSKI P J , CYBIŃSKA J , et al . Naphthalimide-Fused Dipyrrins: Tunable Halochromic Switches and Photothermal NIR-II Dyes [J]. Advanced Science , 2022 , 9 ( 19 ): 2105886 . DOI: 10.1002/advs.202105886 http://dx.doi.org/10.1002/advs.202105886 .
TIAN S , BAI H , LI S , et al . Water-Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIR-II Photothermal Anti-Bacterial Therapy [J]. Angewandte Chemie International Edition , 2021 , 60 ( 21 ): 11758 - 11762 . DOI: 10.1002/anie.202101406 http://dx.doi.org/10.1002/anie.202101406 .
ZHANG Y , ZHAN X , XIONG J , et al . Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells [J]. Scientific Reports , 2018 , 8 ( 1 ): 8720 . DOI: 10.1038/s41598-018-26978-1 http://dx.doi.org/10.1038/s41598-018-26978-1 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621