浏览全部资源
扫码关注微信
1.山西大学 光电研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
2.山西大学 极端光学协同创新中心,山西 太原 030006
Published:2022-09,
Received:30 April 2022,
Revised:16 July 2022,
移动端阅览
彭威娜,靳丕铦,苏静等.高功率全固态单频连续波激光器研究进展[J].新兴科学和技术趋势,2022,1(1):40-48.
PENG Weina, JIN Pixian, SU Jing, et al. Research progress of high-power all-solid-state single-frequency continuous wave laser. [J]. Emerging Science and Technology, 2022,1(1):40-48.
彭威娜,靳丕铦,苏静等.高功率全固态单频连续波激光器研究进展[J].新兴科学和技术趋势,2022,1(1):40-48. DOI: 10.12405/j.issn.2097-1486.2022.01.004.
PENG Weina, JIN Pixian, SU Jing, et al. Research progress of high-power all-solid-state single-frequency continuous wave laser. [J]. Emerging Science and Technology, 2022,1(1):40-48. DOI: 10.12405/j.issn.2097-1486.2022.01.004.
全固态单频连续波激光器因其具有高光束质量、低噪声、窄线宽、高相干性等优点,广泛应用于冷原子物理、精密测量、激光雷达及国防军事等领域。随着科学技术的快速发展和不断深入,传统的单频激光器输出功率较低,不能满足全固态激光器在诸多研究领域的发展需求,因此急需发展高功率的全固态单频连续波激光器。为此,本文首先对比了增益晶体形态和激光放大方式在产生高功率单频连续波激光输出时的优缺点;在此基础上,总结了课题组在全固态单频连续波激光器方面的研究进展。
All-solid-state single-frequency continuous wave lasers have widely been applied in cold atomic physics
precision measurement
laser radar
national defense and military fields owing to their advantages of high beam quality
low noise
narrow linewidth and high coherence. With the rapid development of science and technology
the output powers of traditional single-frequency lasers are too low to meet the requirements in many research fields. Therefore
it is necessary to scale up the output powers of all-solid-state single-frequency continuous-wave lasers. This review compares the advantages and disadvantages of gain crystal types and laser amplification methods in generating high-power single-frequency continuous-wave laser output and summarizes the research progress of our research group in all-solid-state single-frequency continuous-wave lasers.
高功率全固态激光器单频输出功率
high-powerall-solid-state lasersingle-frequencypower scaling
VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 110801. doi: 10.1103/PhysRev-Lett.117.110801http://doi.org/10.1103/PhysRev-Lett.117.110801.
ARSLANOV D D, SPUNEI M, MANDON J, et al. Continuous-wave optical parametric oscillator based infrared spectroscopy for sensitive molecular gas sensing[J]. Laser Photonics Reviews, 2013, 7(2): 188-206. doi: 10.1002/lpor.201100036http://doi.org/10.1002/lpor.201100036.
EISMANN U, BERGSCHNEIDER A, SIEVERS F, et al. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium[J]. Optics Express, 2013, 21(7): 9091-9102. doi: 10.1364/OE.21.009091http://doi.org/10.1364/OE.21.009091.
LIGO SCIENTIFIC COLLABORATION AND VIRGO COLLABORATION. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102http://doi.org/10.1103/PhysRevLett.116.061102.
NABORS C D, FARINAS A D, DAY T, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 2012, 37(24): 5178-5180. doi: 10.48550/arXiv.1205.0590http://doi.org/10.48550/arXiv.1205.0590.
NING J, HAN K Z, HE J L, et al.83.4 W, 17.69 kHzspectralbandwidth, continuous-wave, beam densely folded Innoslab amplifier[J]. Optics Letters, 2017, 42(6): 1109-1112. doi: 10.1364/OL.42.001109http://doi.org/10.1364/OL.42.001109.
DERGACHEV A, FLINT J H, ISYANOVA Y, et al. Review of multipass slab laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 647-660. doi: 10.1364/OE.18.013993http://doi.org/10.1364/OE.18.013993.
NEGEL J P, VOSS A, AHMED M A, et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 2013, 38(24): 5442-5445. doi: 10.1364/OL.38.005442http://doi.org/10.1364/OL.38.005442.
PALMA-VEGA G, WALBAUM T, HEINZIG M, et al. Ring-up-doped fiber for the generation of more than 600 W single-mode narrow-band output at 1018 nm[J]. Optics Letters, 2019, 44(10): 2502-2505. doi: 10.1364/OL.44.002502http://doi.org/10.1364/OL.44.002502.
WELLMANN F, STEINKE M, MEYLAHN F, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors[J]. Optics Express, 2019, 27(20): 28523-28533. doi: 10.1364/OE.27.028523http://doi.org/10.1364/OE.27.028523.
LIEM A, LIMPERT J, ZELLMER H, et al. 100-W single-frequency master-oscillator fiber power amplifier[J]. Optics Letters, 2003, 28(17): 1537-1539. doi: 10.1364/OL.28.001537http://doi.org/10.1364/OL.28.001537.
ROBIN C, DAJANI I, PULFORD B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669. doi: 10.1364/OL.39.000666http://doi.org/10.1364/OL.39.000666.
BUIKEMA A, JOSE F, AUGST S J, et al. Narrowlinewidth fiber amplifier for gravitational-wave detectors[J]. Optics Letters, 2019, 44(15): 3833-3836. doi: 10.1364/OL.44.003833http://doi.org/10.1364/OL.44.003833.
LIU Z, XIE Y, CONG Z, et al.110 mW single-fre-quency Yb: YAG crystal-derived silica fiber laser at 1064 nm[J]. Optics Letters, 2019, 44(17): 4307-4310. doi: 10.1364/OL.44.004307http://doi.org/10.1364/OL.44.004307.
FREDE M, SCHULZ B, WILHELM R, et al. Fundamental mode, single-frequency laser amplifier for gravitational wave detectors[J]. Optics Express, 2007, 15(2): 459-465. doi: 10.1364/OE.15.000459http://doi.org/10.1364/OE.15.000459.
WINKELMANN L, PUNCKEN O, KLUZIK R, et al. Injection-locked single-frequency laser with an output power of 220 W[J]. Applied Physics B, 2011, 102(3): 529-538. doi: 10.1007/s00340-011-4411-9http://doi.org/10.1007/s00340-011-4411-9.
FREDE M, WILHEIM R, BRENDEL M, et al. High power fundamental mode Nd: YAG laser with efficient birefringence compensation[J]. Optics Express, 2004, 12(15): 3581-3589. doi: 10.1364/OPEX.12.003581http://doi.org/10.1364/OPEX.12.003581.
KWEE P, BOGAN C, DANZMANN K, et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO[J]. Optics Express, 2012, 20(10): 10617-10634. doi: 10.1364/OE.20.010617http://doi.org/10.1364/OE.20.010617.
DENG W P, YANG T, CAO J P, et al. High-efficiency 1064 nm nonplanar ring oscillator Nd: YAG laser with diode pumping at 885 nm[J]. Optics Letters, 2018, 43(7): 1562-1565. doi: 10.1364/opex.13.007516http://doi.org/10.1364/opex.13.007516.
WU C T, CHEN F, JU Y L, et al. High-power single-longitudinal-mode operation of Tm: YAG laser using Fabry-Perot etalons and volume Bragg grating[J]. Optics Communications, 2012, 285(10-11): 2693-2696. doi: 10.1016/j.optcom.2012.02.003http://doi.org/10.1016/j.optcom.2012.02.003.
SHENG X, TAWY G, SATHIAN J, et al. Unidirectional single-frequency operation of a continuouswave Alexandrite ring laser with wavelength tunability[J]. Optics Express, 2018, 26(24): 31129-31136. doi: 10.1364/OE.26.031129http://doi.org/10.1364/OE.26.031129.
FREDE M, WILHELM R, KRACHT D, et al. Nd: YAG ring laser with 213 W linearly polarized fundamental mode output power[J]. Optics Express, 2005, 13(19): 7516-7519. doi: 10.1364/opex.13.007516http://doi.org/10.1364/opex.13.007516.
MCDONAGH L, WALLENSTEIN R, KNAPPE R, et al. High-efficiency 60 W TEM00 Nd: YVO4 oscillator pumped at 888 nm[J]. Optics Letters, 2006, 31(22): 3297-3299. doi: 10.1364/OL.31.003297http://doi.org/10.1364/OL.31.003297.
WANG Y J, ZHENG Y H, SHI Z, et al. Highpower single-frequency Nd: YVO4 green laser by selfcompensation of astigmatisms[J]. Laser Physics Letters, 2012, 9(7): 506-510. doi: 10.7452/lapl.201210042http://doi.org/10.7452/lapl.201210042.
YIN Q W, LU H D, SU J, et al. High power singlefrequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal[J]. Optics Letters, 2016, 41(9): 2033-2036. doi: 10.1364/OL.41.002033http://doi.org/10.1364/OL.41.002033.
MARTIN K I, CLARKSON W A, HANNA D C. Self-suppression of axial mode hopping by intracavity second-harmonicgeneration[J]. OpticsLetters, 1997, 22(6): 375-377. doi: 10.1364/ol.22.000375http://doi.org/10.1364/ol.22.000375.
LU H D, SU J, ZHENG Y H, et al. Physical conditions of single-longitudinal-mode operation for highpower all-solid-state lasers[J]. Optics Letters, 2014, 39(5): 1117-1120. doi: 10.1364/OL.39.001117http://doi.org/10.1364/OL.39.001117.
GUO Y R, LU H D, SU J, et al. Intra-cavity roundtrip loss measurement of all-solid-state single-frequency laser by introducing extra nonlinear loss[J]. Chinese Optics Letters, 2017, 15(2): 021402. doi: 10.1364/OE.23.004981http://doi.org/10.1364/OE.23.004981.
GUO Y R, LU H D, XU M Z, et al. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties[J]. Optics Express, 2018, 26(16): 21108-21118. doi: 10.1364/OE.26.021108http://doi.org/10.1364/OE.26.021108.
郭永瑞, 卢华东, 苏静, 等.百瓦级全固态连续单频1 064 nm激光器的研究[J].中国激光, 2017, 44(6): 0601007.
XU M Z, GUO Y R, SU J, et al. 125 W single-frequency CW Nd: YVO4 laser based on two-stage dualend-pumped master-oscillator power amplifiers[J]. Laser Physics Letters, 2019, 16(3): 036201.
YIN Q W, LU H D, PENG K C. Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation[J]. Optics Express, 2015, 23(4): 4981-4990. doi: 10.1364/OE.23.004981http://doi.org/10.1364/OE.23.004981.
GUO Y R, XU M Z, PENG W N, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction[J]. Optics Letters, 2018, 43(24): 6017-6020. doi: 10.1364/OL.43.006017http://doi.org/10.1364/OL.43.006017.
STAROBOR A V, SNETKOV I L, PALASHOV O V. TSAG-based Faraday isolator with depolarization compensation using a counterrotation scheme[J]. Optics Letters, 2018, 43(15): 3774-3777. doi: 10.1364/OL.43.003774http://doi.org/10.1364/OL.43.003774.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution