浏览全部资源
扫码关注微信
1.山西医科大学 医学科学院,山西 太原 030012
2.山西医科大学 第一医院,山西 太原 030001
Published:2022-09,
Received:11 March 2022,
Revised:29 April 2022,
移动端阅览
容烁,张瑞平.纳米医学研究现状及未来发展前景的探索与思考[J].新兴科学和技术趋势,2022,1(1):88-96.
RONG Shuo, ZHANG Ruiping. Research status and future prospects of nanomedicine. [J]. Emerging Science and Technology, 2022,1(1):88-96.
容烁,张瑞平.纳米医学研究现状及未来发展前景的探索与思考[J].新兴科学和技术趋势,2022,1(1):88-96. DOI: 10.12405/j.issn.2097-1486.2022.01.009.
RONG Shuo, ZHANG Ruiping. Research status and future prospects of nanomedicine. [J]. Emerging Science and Technology, 2022,1(1):88-96. DOI: 10.12405/j.issn.2097-1486.2022.01.009.
纳米医学是将纳米科学与技术的原理与方法应用于医学领域,涉及医学、材料学、物理学、化学、生物学、量子力学等众多领域的综合性交叉学科。本文主要从四方面总结和展示了近年来国内外科研工作者在纳米医学研究领域中取得的最新进展,并对未来发展前景进行了探索与思考:(1)几何和力学性能在纳米药物合理设计中的作用;(2)纳米药物与免疫相关补体系统的相互作用;(3)纳米药物通过优化递送策略治疗肿瘤;(4)基于纳米医学和治疗诊断学的患者分层在个性化纳米药物开发中的关键作用。旨在为纳米医学领域的科研临床工作者提供一些参考。
Nanomedicine is a comprehensive interdiscipline that applies the principles and methods of nanoscience and nanotechnology to the medical field
involving a variety of academic disciplines such as medicine
materials science
physics
chemistry
biology
and quantum science.This article mainly summarizes the latest research progress at home and abroad and discusses the future prospects of the nanomedicine research from four aspects: (1) The role of geometric and mechanical properties in the rational design of nanomedicines; (2) Interaction of nanomedicines with the immune-related complement system; (3) Nanomedicines for oncotherapy through optimized delivery strategies; (4) The critical role of patient stratification based on nanomedicine and theranostics in the personalized nanomedicine development.The study aims to provide some references for the scientific and clinical researchers in the field of nanomedicine.
纳米医学肿瘤治疗治疗诊断学
nanomedicineoncotherapytheranostics
GADEKAR V, BORADE Y, KANNAUJIA S, et al. Nanomedicines accessible in the market for clinical interventions[J]. Journal of Controlled Release, 2021, 330: 372-397. doi: 10.1016/j.jconrel.2020.12.034http://doi.org/10.1016/j.jconrel.2020.12.034.
MANZARI M T, SHAMAY Y, KIGUCHI H, et al. Targeted drug delivery strategies for precision medicines[J]. Nature Reviews Materials, 2021, 6(4): 351-370. doi: 10.1016/j.jconrel.2020.12.034http://doi.org/10.1016/j.jconrel.2020.12.034.
LI R O, ZHENG D W, HAN Z Y, et al. mHealth: A smartphone-controlled, wearable platform for tumour treatment[J]. Materials Today, 2020, 40: 91-100.
MITRAGOTRI S, ANDERSON D G, CHEN X, et al. Accelerating the translation of nanomaterials in biomedicine[J]. ACS nano, 2015, 9(7): 6644-6654.
PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature nanotechnology, 2007, 2(12): 751-760.
LEE A, DI MASCOLO D, FRANCARDI M, et al. Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12(7): 2139-2147. doi: 10.1038/s41578-020-00269-6http://doi.org/10.1038/s41578-020-00269-6.
STIGLIANO C, KEY J, RAMIREZ M, et al. Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging[J]. Advanced Functional Materials, 2015, 25(22): 3371-3379.
LU Y, STUREK M, PARK K. Microparticles produced by the hydrogel template method for sustained drug delivery[J]. International journal of pharmaceutics, 2014, 461(1-2): 258-269.
KAI M P, KEELER A W, Perry J L, et al. Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle[J]. Journal of Controlled Release, 2015, 204: 70-77.
LIU Y, WANG Z, LIU Y, et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors[J]. ACS nano, 2017, 11(10): 10539-10548. doi: 10.1016/j.nano.2016.05.012http://doi.org/10.1016/j.nano.2016.05.012.
MOGHIMI S M, SIMBERG D, PAPINI E, et al. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities[J]. Advanced drug delivery reviews, 2020, 157: 83-95.
TAVANO R, GABRIELLI L, LUBIAN E, et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes[J]. ACS nano, 2018, 12(6): 5834-5847. doi: 10.1021/acsnano.8b01806http://doi.org/10.1021/acsnano.8b01806.
CHEN F, WANG G, GRIFFIN J I, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo[J]. Nature nanotechnology, 2017, 12(4): 387-393. doi: 10.1038/NNANO.2016.269http://doi.org/10.1038/NNANO.2016.269.
ZHA H, WANG X, ZHU Y, et al. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modulating tumor-associated macrophages[J]. Cancer immunologyresearch, 2019, 7(2): 193-207. doi: 10.1016/j.nano.2016.05.012http://doi.org/10.1016/j.nano.2016.05.012.
MOGHIMI S M. Nanomedicine safety in preclinical and clinical development: focus on idiosyncratic injection/infusion reactions[J]. Drug discovery today, 2018, 23(5): 1034-1042.
WIBROE P P, ANSELMO A C, NILSSON P H, et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes[J]. Nature nanotechnology, 2017, 12(6): 589-594.
PANNUZZO M, ESPOSITO S, WU L P, et al. O-vercoming nanoparticle-mediated complement activation by surface PEG pairing[J]. Nano letters, 2020, 20(6): 4312-4321.
ZHENG K H, SCHOORMANS J, STIEKEMA L C A, et al. Plaque permeability assessed with DCEMRI associates with USPIO uptake in patients with peripheral artery disease[J]. JACC: Cardiovascular Imaging, 2019, 12(10): 2081-2083. doi: 10.1016/j.jcmg.2019.04.014http://doi.org/10.1016/j.jcmg.2019.04.014.
ZHENG K H, KAISER Y, POEL E, et al. 99mTcfucoidan as diagnostic agent for P-selectin imaging: first-in-human evaluation(phase I)[J]. Atherosclerosis, 2019, 287: e143.
WALL A, NICHOLLS K, CASPERSEN M B, et al. Optimised approach to albumin-drug conjugates using monobromomaleimide-C-2 linkers[J]. Organic&biomolecular chemistry, 2019, 17(34): 7870-7873.
HOWARD K A, DONG M, OUPICKY D, et al. Nanocarrier Stimuli-Activated Gene Delivery[J]. Small, 2007, 3(1): 54-57.
WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nature reviews materials, 2016, 1(5): 1-12.
ROSENBLUM D, PEER D. Omics-based nanomedicine: the future of personalized oncology[J]. Cancer letters, 2014, 352(1): 126-136. doi: 10.1016/j.canlet.2013.07.029http://doi.org/10.1016/j.canlet.2013.07.029.
SAHA R N, VASANTHAKUMAR S, BENDE G, et al. Nanoparticulate drug delivery systems for cancer chemotherapy[J]. Molecular membrane biology, 2010, 27(7): 215-231.
VAN VLERKEN L E, DUAN Z, LITTLE S R, et al. Biodistribution and pharmacokinetic analysis of Paclitaxel and ceramide administered in multifunctionalpolymer-blendnanoparticlesindrugresistant breast cancer model[J]. Molecular pharmaceutics, 2008, 5(4): 516-526.
CUI Y, ZHANG M, ZENG F, et al. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32159-32169. doi: 10.1021/acsami.6b10175http://doi.org/10.1021/acsami.6b10175.
PEER D, MARGALIT R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models[J]. Neoplasia (New York, NY), 2004, 6(4): 343-353.
BOGART L K, POURROY G, MURPHY C J, et al. Nanoparticles for imaging, sensing, and therapeutic intervention[J]. ACS nano, 2014, 8(4): 3107-3122.
ALEXIS F, PRIDGEN E, MOLNAR L K, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles[J]. Molecular pharmaceutics, 2008, 5(4): 505-515.
CHAUHAN V P, JAIN R K. Strategies for advancing cancer nanomedicine[J]. Nature materials, 2013, 12(11): 958-962.
LEE H, SHIELDS A F, SIEGEL B A, et al. 64Cu-MM-302positronemissiontomographyquantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer[J]. Clinical Cancer Research, 2017, 23(15): 4190-4202. doi: 10.1158/1078-0432.CCR-16-3193http://doi.org/10.1158/1078-0432.CCR-16-3193.
YUAN F, DELLIAN M, FUKUMURA D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size[J]. Cancer research, 1995, 55(17): 3752-3756.
ERNSTING M J, MURAKAMI M, ROY A, et al. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles[J]. Journal of controlled release, 2013, 172(3): 782-794.
BARUA S, YOO J W, KOLHAR P, et al. Particle shape enhances specificity of antibody-displaying nan-oparticles[J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3270-3275.
CABRAL H, MATSUMOTO Y, MIZUNO K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nature nanotechnology, 2011, 6(12): 815-823.
LIM J M, SWAMI A, GILSON L M, et al. Ultrahigh throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer[J]. ACS nano, 2014, 8(6): 6056-6065.
DENDUKURI D, PREGIBON D C, CoLLINS J, et al. Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature materials, 2006, 5(5): 365-369.
LANCET J E, UY G L, CORTES J E, et al. CPX-351(cytarabine and daunorubicin)liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia[J]. Journal of Clinical Oncology, 2018, 36(26): 2684-2692. doi: 10.1200/JCO.2017.77.6112http://doi.org/10.1200/JCO.2017.77.6112.
ADAMS D, GONZALEZ-DUARTE A, O′RIORDAN W D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis[J]. New england journal of medicine, 2018, 379(1): 11-21.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution