浏览全部资源
扫码关注微信
1.郑州大学物理学院,河南 郑州 450001
2.河南省科学院量子物理与材料研究所,河南 郑州 450046
Published:25 June 2023,
Received:20 April 2023,
Revised:20 May 2023,
扫 描 看 全 文
徐鹏.周期驱动量子调控[J].新兴科学和技术趋势,2023,2(2):135-146.
XU Peng.Periodically driving quantum control[J].Emerging Science and Technology,2023,2(2):135-146.
徐鹏.周期驱动量子调控[J].新兴科学和技术趋势,2023,2(2):135-146. DOI: 10.12405/j.issn.2097-1486.2023.02.003.
XU Peng.Periodically driving quantum control[J].Emerging Science and Technology,2023,2(2):135-146. DOI: 10.12405/j.issn.2097-1486.2023.02.003.
随着实验技术的进步和发展,周期驱动在量子调控、量子模拟、精密测量等领域展现出越来越重要的作用。本文从处理周期驱动的一般性Floquet理论出发,重点介绍了不同周期调控序列在动力学解耦、延长体系相干时间方面的应用,以及周期调控在发现新奇量子物态如反常体边对应、动力学规范场、离散时间晶体等方面的重要应用。此外,开放体系中有关周期驱动的理论研究也亟待发展。
As the development of experimental technology, periodic driving plays an important role in fields such as quantum control, quantum simulation and precision measurement. This article starts from the Floquet theory that deals with periodic driving, and focuses on the applications of different periodic control sequences in dynamical decoupling and extending the coherence time of systems, as well as the use of periodic control in discovering novel quantum states such as anomalous bulk-edge correspondence, dynamical gauge field, discrete time crystal, etc. In addition, theoretical research on periodic driving in open systems needs to be developed urgently.
周期驱动动力学解耦新奇量子物态
periodic drivingdynamical decouplingnovel quantum states
HAHN E L. Spin Echoes[J/OL]. Physical Review, 1950, 80(4): 580-594[2023-11-14]. DOI:10.1103/PhysRev.80.580http://dx.doi.org/10.1103/PhysRev.80.580.
CARR H Y, PURCELL E M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments[J/OL]. Physical Review, 1954, 94(3): 630-638[2023-11-14]. DOI:10.1103/PhysRev.94.630http://dx.doi.org/10.1103/PhysRev.94.630.
MEIBOOM S, GILL D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times[J/OL]. Review of Scientific Instruments, 1958, 29(8): 688-691[2023-11-14]. DOI:10.1063/1.1716296http://dx.doi.org/10.1063/1.1716296.
KHODJASTEH K, LIDAR D A. Fault-Tolerant Quantum Dynamical Decoupling[J/OL]. Physical Review Letters, 2005, 95(18): 180501[2023-11-14]. DOI:10.1103/PhysRevLett.95.180501http://dx.doi.org/10.1103/PhysRevLett.95.180501.
ZHANG W, KONSTANTINIDIS N P, DOBROVITSKI V V, et al. Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot[J/OL]. Physical Review B, 2008, 77(12): 125336[2023-11-14]. DOI:10.1103/PhysRevB.77.125336http://dx.doi.org/10.1103/PhysRevB.77.125336.
UHRIG G S. Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences[J/OL]. Physical Review Letters, 2007, 98(10): 100504[2023-11-14]. DOI:10.1103/PhysRevLett.98.100504http://dx.doi.org/10.1103/PhysRevLett.98.100504.
YAO Q, ZHANG J, YI X F, et al. Uniaxial Dynamical Decoupling for an Open Quantum System[J/OL]. Physical Review Letters, 2019, 122(1): 010408[2023-11-14]. DOI:10.1103/PhysRevLett.122.010408http://dx.doi.org/10.1103/PhysRevLett.122.010408.
FANCHINI F F, HORNOS J E M, NAPOLITANO R D J. Continuously decoupling single-qubit operations from a perturbing thermal bath of scalar bosons[J/OL]. Physical Review A, 2007, 75(2): 022329[2023-11-14]. DOI:10.1103/PhysRevA.75.022329http://dx.doi.org/10.1103/PhysRevA.75.022329.
FANCHINI F F, HORNOS J E M, NAPOLITANO R D J. Continuously decoupling a Hadamard quantum gate from independent classes of errors[J/OL]. Physical Review A, 2007, 76(3): 032319[2023-11-14]. DOI:10.1103/PhysRevA.76.032319http://dx.doi.org/10.1103/PhysRevA.76.032319.
BERMUDEZ A, SCHMIDT P O, PLENIO M B, et al. Robust trapped-ion quantum logic gates by continuous dynamical decoupling[J/OL]. Physical Review A, 2012, 85(4): 040302[2023-11-14]. DOI:10.1103/PhysRevA.85.040302http://dx.doi.org/10.1103/PhysRevA.85.040302.
CHAUDHRY A Z, GONG J. Decoherence control: Universal protection of two-qubit states and two-qubit gates using continuous driving fields[J/OL]. Physical Review A, 2012, 85(1): 012315[2023-11-14]. DOI:10.1103/PhysRevA.85.012315http://dx.doi.org/10.1103/PhysRevA.85.012315.
TIMONEY N, BAUMGART I, JOHANNING M, et al. Quantum gates and memory using microwave-dressed states[J/OL]. Nature, 2011, 476(7359): 185-188[2023-11-14]. DOI: 10.1038/nature10319http://dx.doi.org/10.1038/nature10319.
XU X, WANG Z, DUAN C, et al. Coherence-Protected Quantum Gate by Continuous Dynamical Decoupling in Diamond[J/OL]. Physical Review Letters, 2012, 109(7): 070502[2023-11-14]. DOI:10.1103/PhysRevLett.109.070502http://dx.doi.org/10.1103/PhysRevLett.109.070502.
ZHANG J, HAN Y, XU P, et al. Preserving coherent spin and squeezed spin states of a spin-1 Bose-Einstein condensate with rotary echoes[J/OL]. Physical Review A, 2016, 94(5): 053608[2023-11-14]. DOI:10.1103/PhysRevA.94.053608http://dx.doi.org/10.1103/PhysRevA.94.053608.
CAI M, XIA K. Optimizing continuous dynamical decoupling with machine learning[J/OL]. Physical Review A, 2022, 106(4): 042434[2023-11-14]. DOI:10.1103/PhysRevA.106.042434http://dx.doi.org/10.1103/PhysRevA.106.042434.
XU P, ZHANG J. Floquet dynamical decoupling at zero bias[J]. arXiv:2305.07847. DOI: 10.48550/arXiv.2305.07847http://dx.doi.org/10.48550/arXiv.2305.07847.
XU X, WANG Z, DUAN C, et al. Coherence-Protected Quantum Gate by Continuous Dynamical Decoupling in Diamond[J/OL]. Physical Review Letters, 2012, 109(7): 070502[2023-11-14]. DOI:10.1103/PhysRevLett.109.070502http://dx.doi.org/10.1103/PhysRevLett.109.070502.
MEDFORD J, CYWIŃSKI Ł, BARTHEL C, et al. Scaling of Dynamical Decoupling for Spin Qubits[J/OL]. Physical Review Letters, 2012, 108(8): 086802[2023-11-14]. DOI:10.1103/PhysRevLett.108.086802http://dx.doi.org/10.1103/PhysRevLett.108.086802.
GUO Q, ZHENG S B, WANG J, et al. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits[J/OL]. Physical Review Letters, 2018, 121(13): 130501[2023-11-14]. DOI:10.1103/PhysRevLett.121.130501http://dx.doi.org/10.1103/PhysRevLett.121.130501.
ABOBEIH M H, CRAMER J, BAKKER M A, et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment[J/OL]. Nature Communications, 2018, 9(1): 2552[2023-11-14]. DOI: 10.1038/s41467-018-04916-zhttp://dx.doi.org/10.1038/s41467-018-04916-z.
WANG Y, UM M, ZHANG J, et al. Single-qubit quantum memory exceeding ten-minute coherence time[J/OL]. Nature Photonics, 2017, 11(10): 646-650[2023-11-14]. DOI: 10.1038/s41566-017-0007-1http://dx.doi.org/10.1038/s41566-017-0007-1.
WANG P, LUAN C Y, QIAO M, et al. Single ion qubit with estimated coherence time exceeding one hour[J/OL]. Nature Communications, 2021, 12(1): 233[2023-11-14]. DOI: 10.1038/s41467-020-20330-whttp://dx.doi.org/10.1038/s41467-020-20330-w.
POKHAREL B, ANAND N, FORTMAN B, et al. Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits[J/OL]. Physical Review Letters, 2018, 121(22): 220502[2023-11-14]. DOI:10.1103/PhysRevLett.121.220502http://dx.doi.org/10.1103/PhysRevLett.121.220502.
ZENESINI A, LIGNIER H, CIAMPINI D, et al. Coherent Control of Dressed Matter Waves[J/OL]. Physical Review Letters, 2009, 102(10): 100403[2023-11-14]. DOI:10.1103/PhysRevLett.102.100403http://dx.doi.org/10.1103/PhysRevLett.102.100403.
STRUCK J, ÖLSCHLÄGER C, LE TARGAT R, et al. Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices[J/OL]. Science, 2011, 333(6045): 996-999[2023-11-14]. DOI:10.1126/science.1207239http://dx.doi.org/10.1126/science.1207239.
CLARK L W, ANDERSON B M, FENG L, et al. Observation of Density-Dependent Gauge Fields in a Bose-Einstein Condensate Based on Micromotion Control in a Shaken Two-Dimensional Lattice[J/OL]. Physical Review Letters, 2018, 121(3): 030402[2023-11-14]. DOI:10.1103/PhysRevLett.121.030402http://dx.doi.org/10.1103/PhysRevLett.121.030402.
JOTZU G, MESSER M, DESBUQUOIS R, et al. Experimental realization of the topological Haldane model with ultracold fermions[J/OL]. Nature, 2014, 515(7526): 237-240[2023-11-14]. DOI: 10.1038/nature13915http://dx.doi.org/10.1038/nature13915.
WINTERSPERGER K, BRAUN C, ÜNAL F N, et al. Realization of an anomalous Floquet topological system with ultracold atoms[J/OL]. Nature Physics, 2020, 16(10): 1058-1063[2023-11-14].DOI:10.1038/s41567-020-0949-yhttp://dx.doi.org/10.1038/s41567-020-0949-y.
CHOI S, CHOI J, LANDIG R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system[J/OL]. Nature, 2017, 543(7644): 221-225[2023-11-14].DOI:10.1038/nature21426http://dx.doi.org/10.1038/nature21426.
CHOI J, ZHOU H, CHOI S, et al. Probing Quantum Thermalization of a Disordered Dipolar Spin Ensemble with Discrete Time-Crystalline Order[J/OL]. Physical Review Letters, 2019, 122(4): 043603[2023-11-14]. DOI:10.1103/PhysRevLett.122.043603http://dx.doi.org/10.1103/PhysRevLett.122.043603.
RANDALL J, BRADLEY C E, VAN DER GRONDEN F V, et al. Many-body–localized discrete time crystal with a programmable spin-based quantum simulator[J/OL]. Science, 2021, 374(6574): 1474-1478[2023-11-14].DOI:10.1126/science.abk0603http://dx.doi.org/10.1126/science.abk0603.
ZHANG J, HESS P W, KYPRIANIDIS A, et al. Observation of a discrete time crystal[J/OL]. Nature, 2017, 543(7644): 217-220[2023-11-14].DOI:10.1038/nature21413http://dx.doi.org/10.1038/nature21413.
KYPRIANIDIS A, MACHADO F, MORONG W, et al. Observation of a prethermal discrete time crystal[J/OL]. Science, 2021, 372(6547): 1192-1196[2023-11-14]. DOI:10.1126/science.abg8102http://dx.doi.org/10.1126/science.abg8102.
ZHANG X, JIANG W, DENG J, et al. Digital quantum simulation of Floquet symmetry-protected topological phases[J/OL]. Nature, 2022, 607(7919): 468-473[2023-11-14].DOI:10.1038/s41586-022-04854-3http://dx.doi.org/10.1038/s41586-022-04854-3.
OKA T, KITAMURA S. Floquet Engineering of Quantum Materials[J/OL]. Annual Review of Condensed Matter Physics, 2019, 10(1): 387-408[2023-11-14]. DOI:10.1146/annurev-conmatphys-031218-013423http://dx.doi.org/10.1146/annurev-conmatphys-031218-013423.
BUKOV M, D'ALESSIO L, POLKOVNIKOV A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering[J/OL]. Advances in Physics, 2015, 64(2): 139-226[2023-11-14]. DOI:10.1080/00018732.2015.1055918http://dx.doi.org/10.1080/00018732.2015.1055918.
KUWAHARA T, MORI T, SAITO K. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems[J/OL]. Annals of Physics, 2016, 367: 96-124[2023-11-14].DOI:10.1016/j.aop.2016.01.012http://dx.doi.org/10.1016/j.aop.2016.01.012.
NIELSEN M A, CHUANG I, Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
BREUER H P, PETRUCCIONE F. The theory of open quantum systems[M]. Oxford University Press on Demand, 2002.
GARDINER C, ZOLLER P. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics[M]. Springer Science & Business Media, 2004.
MA J, HUANG Y Xiao, WANG X, et al. Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels[J/OL]. Physical Review A, 2011, 84(2): 022302[2023-11-14]. DOI:10.1103/PhysRevA.84.022302http://dx.doi.org/10.1103/PhysRevA.84.022302.
AOLITA L, DE MELO F, DAVIDOVICH L. Open-system dynamics of entanglement:a key issues review[J/OL]. Reports on Progress in Physics, 2015, 78(4): 042001[2023-11-14]. DOI:10.1088/0034-4885/78/4/042001http://dx.doi.org/10.1088/0034-4885/78/4/042001.
XU P, YI S, ZHANG W. Efficient Generation of Many-Body Entangled States by Multilevel Oscillations[J/OL]. Physical Review Letters, 2019, 123(7): 073001[2023-11-14]. DOI:10.1103/PhysRevLett.123.073001http://dx.doi.org/10.1103/PhysRevLett.123.073001.
ABDELHAFEZ M, BAKER B, GYENIS A, et al. Universal gates for protected superconducting qubits using optimal control[J/OL]. Physical Review A, 2020, 101(2): 022321[2023-11-14]. DOI:10.1103/PhysRevA.101.022321http://dx.doi.org/10.1103/PhysRevA.101.022321.
ALIFERIS P, PRESKILL J. Fault-tolerant quantum computation against biased noise[J/OL]. Physical Review A, 2008, 78(5): 052331[2023-11-14]. DOI:10.1103/PhysRevA.78.052331http://dx.doi.org/10.1103/PhysRevA.78.052331.
URBANEK M, NACHMAN B, PASCUZZI V R, et al. Mitigating Depolarizing Noise on Quantum Computers with Noise-Estimation Circuits[J/OL]. Physical Review Letters, 2021, 127(27): 270502[2023-11-14]. DOI:10.1103/PhysRevLett.127.270502http://dx.doi.org/10.1103/PhysRevLett.127.270502.
PAIK H, DUTTA S K, LEWIS R M, et al. Decoherence in dc SQUID phase qubits[J/OL]. Physical Review B, 2008, 77(21): 214510[2023-11-14]. DOI:10.1103/PhysRevB.77.214510http://dx.doi.org/10.1103/PhysRevB.77.214510.
POKHAREL B, ANAND N, FORTMAN B, et al. Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits[J/OL]. Physical Review Letters, 2018, 121(22): 220502[2023-11-14]. DOI:10.1103/PhysRevLett.121.220502http://dx.doi.org/10.1103/PhysRevLett.121.220502.
BAUCH E, SINGH S, LEE J, et al. Decoherence of ensembles of nitrogen-vacancy centers in diamond[J/OL]. Physical Review B, 2020, 102(13): 134210[2023-11-14]. DOI:10.1103/PhysRevB.102.134210http://dx.doi.org/10.1103/PhysRevB.102.134210.
WANG Y, UM M, ZHANG J, et al. Single-qubit quantum memory exceeding ten-minute coherence time[J/OL]. Nature Photonics, 2017, 11(10): 646-650[2023-11-14].DOI:10.1038/s41566-017-0007-1http://dx.doi.org/10.1038/s41566-017-0007-1.
ZANARDI P. Symmetrizing evolutions[J/OL]. Physics Letters A, 1999, 258(2-3): 77-82[2023-11-14].DOI:10.1016/S0375-9601(99)00365-5http://dx.doi.org/10.1016/S0375-9601(99)00365-5.
XU P, ZHENG W, ZHAI H. Topological micromotion of Floquet quantum systems[J/OL]. Physical Review B, 2022, 105(4): 045139[2023-11-14]. DOI:10.1103/PhysRevB.105.045139http://dx.doi.org/10.1103/PhysRevB.105.045139.
XU P, DENG T S, ZHENG W, et al. Density-dependent spin-orbit coupling in degenerate quantum gases[J/OL]. Physical Review A, 2021, 103(6): L061302[2023-11-14]. DOI:10.1103/PhysRevA.103.L061302http://dx.doi.org/10.1103/PhysRevA.103.L061302.
XU P, DENG T S. Boundary discrete time crystals induced by topological superconductors in solvable spin chains[J/OL]. Physical Review B, 2023, 107(10): 104301[2023-11-14]. DOI:10.1103/PhysRevB.107.104301http://dx.doi.org/10.1103/PhysRevB.107.104301.
0
Views
9
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution