浏览全部资源
扫码关注微信
1.山西大学光电研究所量子光学与量子光学器件国家重点实验室,光电研究所,山西 太原 030006
2.山西大学极限光学协同创新中心,山西 太原 030006
3.量子物质协同创新中心,北京 100871
4.北京大学物理学院人工微结构与介观物理国家重点实验室,北京 100871
5.上海科技大学,上海 200000
6.辽宁材料实验室,辽宁 沈阳 110000
Published:15 December 2023,
Received:17 October 2023,
Revised:10 November 2023,
扫 描 看 全 文
韩拯,叶堉,刘健鹏.量子超晶格:堆叠相互作用的协同效应[J].新兴科学和技术趋势,2023,2(4):360-366.
HAN Zheng,YE Yu,LIU Jianpeng.Quantum superlattice: synergistic effects of interactions in stacked 2D materials[J].Emerging Science and Technology,2023,2(4):360-366.
韩拯,叶堉,刘健鹏.量子超晶格:堆叠相互作用的协同效应[J].新兴科学和技术趋势,2023,2(4):360-366. DOI: 10.12405/j.issn.2097-1486.2023.04.003.
HAN Zheng,YE Yu,LIU Jianpeng.Quantum superlattice: synergistic effects of interactions in stacked 2D materials[J].Emerging Science and Technology,2023,2(4):360-366. DOI: 10.12405/j.issn.2097-1486.2023.04.003.
电子间库伦相互作用在凝聚态物理中起着至关重要的作用。当电子之间相互作用占据主导时,例如磁性、关联绝缘体等物态相变将会发生。二维电子气,尤其是莫尔(moiré)超晶格二维异质系统的电子关联效应近年来受到广泛关注,出现了一系列新颖的实验和理论结果。本文主要围绕一个比较特殊的物理模型:双层关联二维电子气之间的相互作用与协同效应,介绍其近期的实验与理论进展。
e-e Coulomb interaction plays an essential role in condensed matter physics. When interaction energy between electrons is dominating over kinetic energy, interesting quantum phases such as magnetism and correlated insulator can emerge. Recently, such e-e correlation effects in two-dimensional (2D) electronic systems, especially their twisted moiré superlattices, have been a cutting-edge topic. This paper introduces briefly the latest theoretical and experimental progresses based on a particular model: synergetic interplay between two layers of 2D interacting electronic system, and the emerging phenomena.
库伦相互作用电子关联二维异质结莫尔超晶格协同效应
Coulomb interactionstrongly correlated systemtwo-dimensional heterostructuresmoiré superlatticesynergetic interplay
NOVOSELOV K, GEIM A, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. DOI:10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896.
GEIM A, NOVOSELOV K. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183. DOI:10.1038/nmat1849http://dx.doi.org/10.1038/nmat1849.
DONG B, YANG T, HAN Z. Flattening is flattering: The revolutionizing 2D electronic systems[J]. Chinese Physics B, 2020, 29(9): 097307. DOI:10.1088/1674-1056/aba605http://dx.doi.org/10.1088/1674-1056/aba605.
DEAN C, YOUNG A F, MERIC J, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(8): 722. DOI:10.1038/nnano.2010.172http://dx.doi.org/10.1038/nnano.2010.172.
BOLOTIN K I, SIKES K, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351. DOI:10.1016/j.ssc.2008.02.024http://dx.doi.org/10.1016/j.ssc.2008.02.024.
ELIAS D C, GORBACHEV R V, MAYOROV A S, et al. Dirac cones reshaped by interaction effects in suspended graphene[J]. Nature Physics, 2011, 7(9): 701. DOI:10.1038/nphys2049http://dx.doi.org/10.1038/nphys2049.
BAO W, VELASCO J, ZHANG F, et al. Evidence for a Spontaneous Gapped State in Ultraclean Bilayer Graphene[J]. Proceedings of the National Academy of Sciences, 2012, 109(27): 10802. DOI:10.1073/pnas.1205978109http://dx.doi.org/10.1073/pnas.1205978109.
BISTRITZER R, MACDONALD A H. Moire bands in twisted double-layer graphene[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12233. DOI: 10.1073/pnas.1108174108http://dx.doi.org/10.1073/pnas.1108174108.
CAO Y, LUO J Y, FATEMI V, et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene[J]. Physical Review Letter, 2016, 117(11): 116804. DOI:10.1103/PhysRevLett.117.116804http://dx.doi.org/10.1103/PhysRevLett.117.116804.
CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43. DOI:10.1038/nature26160http://dx.doi.org/10.1038/nature26160.
SHARPE A L, FOX E J, BARNARD A W, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene[J]. Science, 2019, 365(6453): 605. DOI:10.1126/science.aaw378http://dx.doi.org/10.1126/science.aaw378.
LIU J, DAI X. Orbital magnetic states in moiré graphene systems[J]. Nature Review Physics, 2021, 3(5): 367. DOI:10.1038/s42254-021-00297-3http://dx.doi.org/10.1038/s42254-021-00297-3.
SERLIN M, TSCHIRHART C L, POLSHYN H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure[J]. Science, 2019, 367(6480): 900. DOI:10.1126/science.aay5533http://dx.doi.org/10.1126/science.aay5533.
LI T, JIANG S, SHEN B, et al. Quantum anomalous Hall effect from intertwined moiré bands[J]. Nature, 2021 600(7890): 641. DOI:10.1038/s41586-021-04171-1http://dx.doi.org/10.1038/s41586-021-04171-1.
XU F, SUN Z, JIA T, et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2[J]. Physical Review X, 2023, 13(3): 031037. DOI:10.1103/PhysRevX.13.031037http://dx.doi.org/10.1103/PhysRevX.13.031037.
LU Z, HAN T, YAO Y, et al., Fractional quantum anomalous Hall effect in multilayer graphene[J]. Nature, 2024, 626(8000): 759. DOI:10.1038/s41586-023-07010-7http://dx.doi.org/10.1038/s41586-023-07010-7.
SHEVCHENKO E V, TALAPIN D V, KOTOV N A, et al. Structural diversity in binary nanoparticle superlattices[J]. Nature, 2006, 439(7072): 55. DOI:10.1038/nature04414http://dx.doi.org/10.1038/nature04414.
LI Y, DIETRICH S, FORSYTHE C, et al. Anisotropic band flattening in graphene with one-dimensional superlattices[J]. Nature Nanotechnology, 2021, 16(5): 525. DOI:10.1038/s41565-021-00849-9http://dx.doi.org/10.1038/s41565-021-00849-9.
SHAYEGAN M. Wigner crystals in flat band 2D electron systems[J]. Nature Reviews Physics, 2022, 4(4): 212. DOI:10.1038/s42254-022-00444-4http://dx.doi.org/10.1038/s42254-022-00444-4.
WANG Y, GAO X, YANG N, et al. Quantum Hall phase in graphene engineered by interfacial charge coupling[J]. Nature Nanotechnology, 2022, 17(12): 1272. DOI:10.1038/s41565-022-01248-4http://dx.doi.org/10.1038/s41565-022-01248-4.
YANG K, GAO X, WANG Y, et al. Unconventional correlated insulator in CrOCl-interfaced Bernal bilayer graphene[J]. Nature Communications, 2023, 14(1): 2136. DOI:10.1038/s41467-023-37769-2http://dx.doi.org/10.1038/s41467-023-37769-2.
SHAO Y, DAI X. Electrical breakdown of excitonic insulator [DB/OL]. arXiv:2302.07543. DOI:10.48550/arXiv.2302.07543http://dx.doi.org/10.48550/arXiv.2302.07543.
LU X, ZHANG S, WANG Y, et al. Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures[J]. Nature Communications, 2023, 14(1): 5550. DOI:10.1038/s41467-023-41293-8http://dx.doi.org/10.1038/s41467-023-41293-8
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution