Artificial life is an interdisciplinary study on life itself and life process, and it is a diversified research field, including dry artificial life and wet artificial life. Dry artificial life is divided into soft artificial life which uses digital structure to create simulation or display life behavior, and hard artificial life which uses hardware to produce realistic system. The field of wet artificial life is derived from molecular biology, the synthesis of living systems through biochemical substances, i.e., synthetic biology. A common theme in both fields is to construct living systems from non-living parts and to build detailed life models. This paper will focus on the two fields of artificial life, and sort out the source between them from the historical perspective, so as to better explore and understand the mystery of life.
关键词
合成生物学干人工生命生物机器人
Keywords
synthetic biologyhard artificial lifebio-robot
references
LANGTON C G, FARMER D, RASMUSSEN S, et al. Artificial Life Ⅱ[J]. Artificial Life, 1991, 31(3):167-168. DOI:10.1007/978-1-4020-4403-8_8http://dx.doi.org/10.1007/978-1-4020-4403-8_8.
CINTAS P. Chasing Synthetic Life: A Tale of Forms, Chemical Fossils, and Biomorphs[J]. Angewandte chemie-international edition,2020,59(19):7296-7304. DOI:10.1002/anie.201915853http://dx.doi.org/10.1002/anie.201915853.
ALAN T. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1952,237(641): 37-72. DOI:10.1400/281797http://dx.doi.org/10.1400/281797.
GREENBAUM D, GERSTEIN M. The lasting legacy of John von NeumannThe Man from the Future: The Visionary Life of John von NeumannAnanyo Bhattacharya Norton, 2022. 368 pp[J]. Science, 2022, 375(6584):983. DOI:10.1126/science.abn7018http://dx.doi.org/10.1126/science.abn7018.
WATERS D P. Von Neumann’s Theory of Self-Reproducing Automata: A Useful Framework for Biosemiotics?[J]. Bosemiotics, 2012, 5(1):5-15. DOI:10.1007/s12304-011-9127-zhttp://dx.doi.org/10.1007/s12304-011-9127-z.
WATSON J D, CRICK F H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature,1953,171:737-738. DOI:10.1038/171737a0http://dx.doi.org/10.1038/171737a0.
BRENNER S. Interview with Sydney Brenner by Soraya de Chadarevian[J]. Studies in History and Philosophy of Biological and Biomedical Sciences,2009, 40(1), 65-71. DOI:10.1016/j.shpsc.2008.12.008http://dx.doi.org/10.1016/j.shpsc.2008.12.008.
ENDY D. Foundations for engineering biology[J]. Nature, 2005,438(7067): 449-453. DOI:10.1038/nature04342http://dx.doi.org/10.1038/nature04342.
克雷格·文特尔, 生命的未来[M]. 贾拥民译, 杭州: 浙江人民出版社, 2016: 255.
CALTECHARCHIVES. Richard feynman’s blackboard at time of his death[Z/OL].https://img2018.cnblogs.com/news/66372/201810/66372-20181024160035622-736760312.jpghttps://img2018.cnblogs.com/news/66372/201810/66372-20181024160035622-736760312.jpg.
SAM K, DOUGLAS B, MICHAEL L, et al. A scalable pipeline for designing reconfigurable organisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(4):1853-1859. DOI:10.1073/pnas.1910837117http://dx.doi.org/10.1073/pnas.1910837117.
GUMUSKAYA G,SRIVASTAVA P,COOPER B G, et al. Motile Living Biobots Self-Construct from Adult Human Somatic Progenitor Seed Cells[J]. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2023,11(4):e2303575. DOI:10.1002/advs.202303575http://dx.doi.org/10.1002/advs.202303575.