浏览全部资源
扫码关注微信
1.中国科学院,北京 100864
2.上海交通大学,上海 200240
[ "张杰是物理学家,在激光聚变物理与高能量密度物理前沿研究做出重要学术成就,并于2003年当选中国科学院院士、2007年当选德国科学院院士、2008年当选发展中国家科学院院士、2011年当选英国皇家工程院外籍院士、2012年当选美国科学院外籍院士,2015年获得激光聚变和高能量密度物理领域国际最重要奖项—泰勒奖章、2018年获得香港求是杰出科技成就集体奖、2021年获得未来科学大奖—物质科学奖。", "张杰也是教育家,在2006年至2017年任上海交通大学校长期间,实施了一系列意义深远的改革,推进了学校的快速发展,在学校治理和学校教育方面做出了重要的贡献。他提出并实践了以人为本的“制度激励”大学治理理念;引育并举,构建世界一流的师资队伍;建立知识探究、能力建设、人格养成“三位一体”的创新型领袖人才培养体系;推动面向世界科技前沿、面向国家重大战略需求的科学研究。在他与全体交大师生的努力下,交大获得了高质量的快速发展,成功跻身世界一流大学的行列。", "张杰现任中国物理学会理事长,上海交通大学学术委员会主任,李政道研究所所长;兼任香港特区科研资助委员会(RGC)委员,新加坡国家研究理事会(NRF)外国专家委员会委员;曾任中国科学院副院长,中国科学院大学党委书记,亚太物理学会联合会主席等职。E-mail:jiezhang@cashq.ac.cn" ]
纸质出版日期:2022-09,
移动端阅览
张杰.激光照亮未来[J].新兴科学和技术趋势,2022,1(1):1-9.
ZHANG Jie. Lasers light up the future. [J]. Emerging Science and Technology, 2022,1(1):1-9.
张杰.激光照亮未来[J].新兴科学和技术趋势,2022,1(1):1-9. DOI: 10.12405/j.issn.2097-1486.2022.01.001.
ZHANG Jie. Lasers light up the future. [J]. Emerging Science and Technology, 2022,1(1):1-9. DOI: 10.12405/j.issn.2097-1486.2022.01.001.
激光是人类最伟大的发明之一,激光科学技术的发展对人类社会的文明进步产生了重要影响。本文回顾了激光科技的发展历程,介绍了在与激光科技直接相关的十项诺贝尔奖中,与我们研究方向密切相关的2018年诺贝尔物理奖中的啁啾脉冲放大技术,并重点介绍了我们团队在高能量密度物理(High Energy Density Physics,HEDP)前沿领域的研究进展,本文还对该领域的未来发展趋势做了展望。
Lasers are one of the greatest inventions of mankind. The development of laser technology has made impact on the civilization of human society. This paper reviews the development of laser physics. Among the ten Nobel Prizes directly related to laser physics
the chirped pulse amplification technology of the 2018 Nobel Prize in Physics is closely connected with our research. The author highlights the research progress by his teamwork in the frontiers of high energy density physics and makes a prospect of the future trend in this field as well.
激光物理啁啾脉冲放大高能量密度物理
laser physicschirped pulse amplificationhigh energy density physics
STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90120-8http://doi.org/10.1016/0030-4018(85)90120-8.
TAJIMA T, DAWSON J M. Laser Electron Accelerator[J]. Phys Rev Lett, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267http://doi.org/10.1103/PhysRevLett.43.267.
JOSHI C. Plasma Accelerators[J]. Scientific American, 2006(294): 40-47. doi: 10.1063/1.35293http://doi.org/10.1063/1.35293.
MANGLES S P D, MURPHY C D, et al. Monoenergetic beams of relativistic electrons from intense laserplasma interactions[J]. Nature, 2004(431): 535-538. doi: 10.1038/nature02939http://doi.org/10.1038/nature02939.
GEDDES C G R, TOTH C, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004(431): 538-541. doi: 10.1038/nature02900http://doi.org/10.1038/nature02900.
FAURE J, GLINEC Y, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004(431): 541-544. doi: 10.1038/nature02963http://doi.org/10.1038/nature02963.
LEEMANS W P, GONSALVES A J, MAO H, et al. Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime[J]. Phys Rev Lett, 2014, 113(24): 245002. doi: 10.1103/PhysRevLett.113.245002http://doi.org/10.1103/PhysRevLett.113.245002.
CHEN M, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. J Appl Phys, 2006, 99(5): 056109. doi: 10.1063/1.2179194http://doi.org/10.1063/1.2179194.
CHEN M, et al. Multi-chromatic narrow-energy-spread electron bunches from laser wakefield acceleration with dual-color lasers[J]. Phys Rev Lett, 2015, 114(8): 084801. doi: 10.1103/PhysRevLett.114.084801http://doi.org/10.1103/PhysRevLett.114.084801.
Yu L L, Esarey E, Schroeder C B, J L Vay, Benedetti C, Geddes C G R, M Chen, and Leemans W P. Two-color laser ionization injection[J]. Phys Rev Lett, 2014, 112(12): 125001. doi: 10.1103/Phys-RevLett.112.125001http://doi.org/10.1103/Phys-RevLett.112.125001.
ZHU X L, et al. Extremely brilliant GeV-rays from a two-stage laser-plasma accelerator[J]. Science Advances, 2020, 6(22): eaaz7240. doi: 10.1126/sciadv.aaz7240http://doi.org/10.1126/sciadv.aaz7240.
LUO J, et al. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels[J]. Phys Rev Lett, 2018, 120(15): 154801. doi: 10.1103/PhysRevLett.120.154801http://doi.org/10.1103/PhysRevLett.120.154801.
QI F, et al. Breaking 50 Femtosecond Resolution Barrier in MeV Ultrafast Electron Diffraction with a Double Bend Achromat Compressor[J]. Phys Rev Lett, 2020, 124(13): 134803. doi: 10.1103/Phys-RevLett.120.134803http://doi.org/10.1103/Phys-RevLett.120.134803.
ZHONG J Y, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6(12): 984-987. doi: 10.1038/nphys1790http://doi.org/10.1038/nphys1790.
DONG Q L, et al. Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma Interaction[J]. Phys Rev Lett, 2012, 108(21): 215001. doi: 10.1103/PhysRevLett.108.215001http://doi.org/10.1103/PhysRevLett.108.215001.
MA J M, et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal[J]. Optica, 2015(2): 1006-1009. doi: 10.1364/OPTICA.2.001006http://doi.org/10.1364/OPTICA.2.001006.
STRICKLAND D, MOUROU G. Comperssion of Amplified Chirped Optical Pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8http://doi.org/10.1016/0030-4018(85)90120-8.
DUBIETIS A, JONUŠAUSKAS G, PISKARSKAS A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 1992, 88(4-6): 437-440. doi: 10.1016/0030-4018(92)90070-8http://doi.org/10.1016/0030-4018(92)90070-8.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构