浏览全部资源
扫码关注微信
1.天津大学化工学院,教育部合成生物学前沿科学中心,天津 300072
2.山西大学合成生物学学院,山西 太原 030006
[ "李炳志,天津大学讲席教授,化工学院副院长,入选国家万人计划科技创新领军人才和教育部青年长江学者,曾获得国家基金委优秀青年基金资助和天津市杰青基金资助,国家重点研发计划项目首席科学家称号。2005年本科毕业于南开大学,2010年于天津大学获博士学位。主要研究方向包括合成生物学、DNA信息存储、生物质生物转化等。研究成果发表Science、Nature Communications、Chemical Society Reviews等论文100余篇。" ]
纸质出版日期:2024-03-15,
收稿日期:2024-02-17,
修回日期:2024-03-02,
扫 描 看 全 文
李炳志,郭一鸣.合成生物学点亮木质素增值之路[J].新兴科学和技术趋势,2024,3(1):83-93.
LI Bingzhi,GUO Yiming.Synthetic biology paves the way of lignin valorization[J].Emerging Science and Technology,2024,3(1):83-93.
李炳志,郭一鸣.合成生物学点亮木质素增值之路[J].新兴科学和技术趋势,2024,3(1):83-93. DOI: 10.12405/j.issn.2097-1486.2024.01.009.
LI Bingzhi,GUO Yiming.Synthetic biology paves the way of lignin valorization[J].Emerging Science and Technology,2024,3(1):83-93. DOI: 10.12405/j.issn.2097-1486.2024.01.009.
木质素是自然界最丰富的芳香化合物来源。然而,受到木质素结构复杂性和异质性的限制,木质素的解聚和转化一直是其可持续利用的主要难题。新兴的合成生物学为木质素有效增值提供了良好的技术支持。本文简要介绍了木质素解聚的多种策略,重点讨论了合成生物学在木质素转化为高附加值化学品的应用,并展望了今后木质素生物转化的研究和应用的关键挑战。
Lignin is an abundant source of aromatics in nature. However, the sustainable utilization of lignin is continuously confined by its degradation and transformation due to the structural complexity and intrinsic heterogeneity. The emerging synthetic biology provides technical support for lignin valorization. This review introduces briefly several strategies of lignin depolymerization and discusses comprehensively the application of synthetic biology in converting lignin to value-added chemicals. In addition, the challenges of research and application in lignin biotransformation is prospected.
木质素合成生物学生物转化高附加值化学品
Ligninsynthetic biologybiotransformationvalue-added chemicals
SOROKINA K N, TARAN O P, MEDVEDEVA T B, et al. Cellulose Biorefinery Based on a Combined Catalytic and Biotechnological Approach for Production of 5-HMF and Ethanol[J]. Chemsuschem,2017,10(3):562-574. DOI:10.1002/cssc.201601244http://dx.doi.org/10.1002/cssc.201601244.
TAKKELLAPATI S, LI T, GONZALEZ M A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery[J]. Clean Technol Envir, 2018,20(7):1615-1630. DOI:10.1007/s10098-018-1568-5http://dx.doi.org/10.1007/s10098-018-1568-5.
BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Ind Crop Prod, 2019,139(0926-6690):111526. DOI:10.1016/j.indcrop.2019.111526http://dx.doi.org/10.1016/j.indcrop.2019.111526.
MANKAR A R, MODAK A, PANT K K. Recent Advances in the Valorization of Lignin: A Key Focus on Pretreatment, Characterization, and Catalytic Depolymerization Strategies for Future Biorefineries[J]. Adv Sustain Syst,2022,6(3).DOI:10.1002/adsu.202100299http://dx.doi.org/10.1002/adsu.202100299.
MELRO E, FILIPE A, SOUSA D, et al. Revisiting lignin: a tour through its structural features, characterization methods and applications[J]. New J Chem,2021,45(16):6986-7013. DOI:10.1039/d0nj06234khttp://dx.doi.org/10.1039/d0nj06234k.
XU Z X, LEI P, ZHAI R, et al. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products[J]. Biotechnol Biof Biop,2019,12(1):32. DOI:10.1186/s13068-019-1376-0http://dx.doi.org/10.1186/s13068-019-1376-0.
VERMAAS J V, DIXON R A, CHEN F, et al. Passive membrane transport of lignin-related compounds[J]. P Natl Acad Sci USA,2019,116(46):23117-23123. DOI:10.1073/pnas.1904643116http://dx.doi.org/10.1073/pnas.1904643116.
THRING R W. Alkaline-Degradation of Alcell(R) Lignin[J]. Biomass Bioenerg,1994,7(1-6):125-130. DOI:10.1016/0961-9534(94)00051-Thttp://dx.doi.org/10.1016/0961-9534(94)00051-T.
YUAN Z, CHENG S, LEITCH M, et al. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresource Technology,2010,101(23):9308-9313. DOI:10.1016/j.biortech.2010.06.140http://dx.doi.org/10.1016/j.biortech.2010.06.140.
MAHMOOD N, YUAN Z, SCHMIDT J, et al. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters[J]. Bioresource Technology, 2013,139:13-20. DOI:10.1016/j.biortech.2013.03.199http://dx.doi.org/10.1016/j.biortech.2013.03.199.
UPTON B M, KASKO A M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective[J]. Chemical Reviews,2016,116(4):2275-2306. DOI:10.1021/acs.chemrev.5b00345http://dx.doi.org/10.1021/acs.chemrev.5b00345.
RAMZAN H, USMAN M, NADEEM F, et al. Depolymerization of lignin: Recent progress towards value-added chemicals and biohydrogen production[J]. Bioresource Technology,2023,386:129492. DOI:10.1016/j.biortech.2023.129492http://dx.doi.org/10.1016/j.biortech.2023.129492.
BARTLING A W, STONE M L, HANES R J, et al. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation[J]. Energ Environ Sci,2021,14(8):4147-4168. DOI:10.1039/d1ee01642chttp://dx.doi.org/10.1039/d1ee01642c.
RENDERS T, VAN DEN BOSSCHE G, VANGEEL T, et al. Reductive catalytic fractionation: State of the art of the lignin-first biorefinery[J]. Curr Opin Biotech,2019,56:193-201. DOI:10.1016/j.copbio.2018.12.005http://dx.doi.org/10.1016/j.copbio.2018.12.005.
李治宇, 逯炀炀, 王文文, 等.“木质素优先解聚”策略下生物质定向解聚研究进展[J]. 农业工程学报,2024,40(1):130-142. DOI:10.11975/j.issn.1002-6819.202307007http://dx.doi.org/10.11975/j.issn.1002-6819.202307007.
THI H D, VAN AELST K, VAN DEN BOSCH S, et al. Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC x GC-FID/MS[J].Green Chem,2022,24(1):191-206. DOI:10.1039/d1gc03822bhttp://dx.doi.org/10.1039/d1gc03822b.
LI X, XU Y, ALORKU K, et al. A review of lignin-first reductive catalytic fractionation of lignocellulose[J]. Molecular Catalysis,2023,550:113551. DOI:10.1016/j.mcat.2023.113551http://dx.doi.org/10.1016/j.mcat.2023.113551.
ZHAO Z M, MENG X, SCHEIDEMANTLE B, et al. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion[J]. Bioresource Technology,2022,347:126367. DOI:10.1016/j.biortech.2021.126367http://dx.doi.org/10.1016/j.biortech.2021.126367.
LIU Z H, HAO N, WANG Y Y, et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization[J]. Nature Communications,2021,12(1):3912. DOI:10.1038/s41467-021-23920-4http://dx.doi.org/10.1038/s41467-021-23920-4.
SINGHANIA R R, PATEL A K, RAJ T, et al. Lignin valorisation via enzymes: A sustainable approach[J]. Fuel,2022, 311. DOI:10.1016/j.fuel.2021.122608http://dx.doi.org/10.1016/j.fuel.2021.122608.
SUGANO Y, YOSHIDA T. DyP-Type Peroxidases: Recent Advances and Perspectives[J]. International Journal of Molecular Sciences,2021,22(11):5556. DOI:10.3390/ijms22115556http://dx.doi.org/10.3390/ijms22115556.
LIU Y, LUO G, NGO H H, et al. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review[J]. Bioresource Technology,2020,298:122511. DOI:10.1016/j.biortech.2019.122511http://dx.doi.org/10.1016/j.biortech.2019.122511.
CHIO C L, SAIN M, QIN W S. Lignin utilization: A review of lignin depolymerization from various aspects[J]. Renew Sust Energ Rev, 2019,107:232-249. DOI:10.1016/j.rser.2019.03.008http://dx.doi.org/10.1016/j.rser.2019.03.008.
ZHANG W R, WANG W W, WANG J H, et al. Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1[J]. Appl Environ Microb,2021,87(23):e0135521. DOI:10.1128/AEM.01355-21http://dx.doi.org/10.1128/AEM.01355-21.
GUAN Z B, LUO Q, WANG H R, et al. Bacterial laccases: promising biological green tools for industrial applications[J]. Cellular and Molecular Life Sciences,2018,75(19):3569-3592. DOI:10.1007/s00018-018-2883-zhttp://dx.doi.org/10.1007/s00018-018-2883-z.
LIU H, LIU Z H, ZHANG R K, et al. Bacterial conversion routes for lignin valorization[J]. Biotechnology Advances,2022,60:108000. DOI:10.1016/j.biotechadv.2022.108000http://dx.doi.org/10.1016/j.biotechadv.2022.108000.
PARK G W, GONG G, JOO J C, et al. Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review[J]. Renew Sust Energ Rev,2022,157.DOI:10.1016/j.rser.2021.112025http://dx.doi.org/10.1016/j.rser.2021.112025.
BUSSE N, CZERMAK P. Role and Application of Versatile Peroxidase (VP) for Utilizing Lignocellulose in Biorefineries[M].GUPTA V K. Microbial Enzymes in Bioconversions of Biomass. Cham; Springer International Publishing. 2016: 271-300.
SINGH A K, IQBAL H M N, CARDULLO N, et al. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology[J]. International Journal of Biological Macromolecules,2023,242(PT 3):124968. DOI:10.1016/j.ijbiomac.2023.124968http://dx.doi.org/10.1016/j.ijbiomac.2023.124968.
BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances,2019,37(6):107360. DOI:10.1016/j.biotechadv.2019.02.016http://dx.doi.org/10.1016/j.biotechadv.2019.02.016.
YANG Y, SONG W Y, HUR H G, et al. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin[J]. International Journal of Biological Macromolecules,2019,124:200-208. DOI:10.1016/j.ijbiomac.2018.11.144http://dx.doi.org/10.1016/j.ijbiomac.2018.11.144.
KHAN S I, ZADA N S, SAHINKAYA M, et al. Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5[J]. Enzyme and Microbial Technology,2021,151:109917. DOI:10.1016/j.enzmictec.2021.109917http://dx.doi.org/10.1016/j.enzmictec.2021.109917.
AHMAD M, ROBERTS J N, HARDIMAN E M, et al. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase[J]. Biochemistry,2011,50(23):5096-5107. DOI:10.1021/bi101892zhttp://dx.doi.org/10.1021/bi101892z.
SINGH R, GRIGG J C, QIN W, et al. Improved Manganese-Oxidizing Activity of DypB, a Peroxidase from a Lignolytic Bacterium[J]. Acs Chem Biol,2013,8(4):700-706. DOI:10.1021/cb300608xhttp://dx.doi.org/10.1021/cb300608x.
MARINOVIC M, NOUSIAINEN P, DILOKPIMOL A, et al. Selective Cleavage of Lignin beta-O-4 Aryl Ether Bond by beta-Etherase of the White-Rot Fungus Dichomitus squalens[J]. Acs Sustain Chem Eng,2018,6(3):2878-2882. DOI:10.1021/acssuschemeng.7b03619http://dx.doi.org/10.1021/acssuschemeng.7b03619.
DU X, TRICKER A W, YANG W S, et al. Oxidative Catalytic Fractionation and Depolymerization of Lignin in a One-Pot Single-Catalyst System[J]. Acs Sustain Chem Eng, 2021,9(23):7719-7727. DOI:10.1021/acssuschemeng.0c08448http://dx.doi.org/10.1021/acssuschemeng.0c08448.
TIMOKHIN V I, REGNER M, MOTAGAMWALA A H, et al. Production of p-Coumaric Acid from Corn GVL-Lignin[J]. Acs Sustain Chem Eng,2020,8(47):17427-17438. DOI:10.1021/acssuschemeng.0c05651http://dx.doi.org/10.1021/acssuschemeng.0c05651.
QIAN S, GAO S, LI J, et al. Effects of combined enzymatic hydrolysis and fed-batch operation on efficient improvement of ferulic acid and p-coumaric acid production from pretreated corn straws[J]. Bioresource Technology,2022,366:128176. DOI:10.1016/j.biortech.2022.128176http://dx.doi.org/10.1016/j.biortech.2022.128176.
LIU Z H, SHINDE S, XIE S X, et al. Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries[J]. Sustain Energ Fuels,2019,3(8):2024-2037. DOI:10.1039/c9se00021fhttp://dx.doi.org/10.1039/c9se00021f.
WEN J L, SUN S L, YUAN T Q, et al. Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis[J]. Green Chem,2015,17(3):1589-1596. DOI:10.1039/c4gc01889chttp://dx.doi.org/10.1039/c4gc01889c.
ZHAO C, XIE S X, PU Y Q, et al. Synergistic enzymatic and microbial lignin conversion[J]. Green Chem,2016,18(5):1306-1312. DOI:10.1039/c5gc01955ahttp://dx.doi.org/10.1039/c5gc01955a.
LIU Z H, OLSON M L, SHINDE S, et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment[J]. Green Chem,2017,19(20):4939-4955. DOI:10.1039/c7gc02057khttp://dx.doi.org/10.1039/c7gc02057k.
GU J, QIU Q, YU Y, et al. Bacterial transformation of lignin: key enzymes and high-value products[J]. Biotechnol Biof Biop,2024,17(1):2. DOI:10.1186/s13068-023-02447-4http://dx.doi.org/10.1186/s13068-023-02447-4.
ZHANG R, ZHAO C H, CHANG H C, et al. Lignin valorization meets synthetic biology[J]. Engineering in Life Sciences,2019,19(6):463-470. DOI:10.1002/elsc.201800133http://dx.doi.org/10.1002/elsc.201800133.
MARTINKOVA L, GRULICH M, PATEK M, et al. Bio-Based Valorization of Lignin-Derived Phenolic Compounds: A Review[J]. Biomolecules,2023,13(5). DOI:10.3390/biom13050717http://dx.doi.org/10.3390/biom13050717.
LIU R Y, LIU Z H, LI B Z, et al. Biotransformation of lignin into 4-vinylphenol derivatives toward lignin valorization[J]. Green Chem, 2024,26(4):1770-1789. DOI:10.1039/d3gc03763khttp://dx.doi.org/10.1039/d3gc03763k.
LI M, WILKINS M. Lignin bioconversion into valuable products: fractionation, depolymerization, aromatic compound conversion, and bioproduct formation[J]. Systems Microbiology and Biomanufacturing,2021,1(2):166-185. DOI:10.1007/s43393-020-00016-6http://dx.doi.org/10.1007/s43393-020-00016-6.
JUNG D H, KIM E J, JUNG E, et al. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1[J]. Biotechnology and Bioengineering,2016,113(7):1493-1503. DOI:10.1002/bit.25908http://dx.doi.org/10.1002/bit.25908.
CAI C G, XU Z X, ZHOU H R, et al. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation[J]. Sci Adv,2021,7(36):eabg4585. DOI:10.1126/sciadv.abg4585http://dx.doi.org/10.1126/sciadv.abg4585.
FU B X, XIAO G Z, ZHANG Y, et al. One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid[J]. J Agr Food Chem,2021,69(38):11336-11341. DOI:10.1021/acs.jafc.1c03960http://dx.doi.org/10.1021/acs.jafc.1c03960.
WU W H, LIU F, SINGH S. Toward engineering E. coli with an autoregulatory system for lignin valorization[J]. P Natl Acad Sci USA,2018,115(12):2970-2975. DOI:10.1073/pnas.1720129115http://dx.doi.org/10.1073/pnas.1720129115.
MIAO L T, LI Q Y, DIAO A P, et al. Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation.[J]. Appl Microbiol Biot,2015,99(12):5163-5173. DOI:10.1007/s00253-015-6497-1http://dx.doi.org/10.1007/s00253-015-6497-1.
KAMBOURAKIS S, DRATHS K M, FROST J W. Synthesis of gallic acid and pyrogallol from glucose: Replacing natural product isolation with microbial catalysis[J]. J Am Chem Soc,2000,122(37):9042-9043. DOI:DOI 10.1021/ja000853rhttp://dx.doi.org/DOI10.1021/ja000853r.
SHENG X, LIND M E, HIMO F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase[J]. The FEBS Journal,2015,282(24):4703-4713. DOI:10.1111/febs.13525http://dx.doi.org/10.1111/febs.13525.
HU H F, LI L L, DING S J. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives[J]. Appl Microbiol Biot,2015,99(12):5071-5081. DOI:10.1007/s00253-014-6313-3http://dx.doi.org/10.1007/s00253-014-6313-3.
RODRIGUEZ A, MEADOWS J A, SUN N, et al. Evaluation of bacterial hosts for conversion of lignin-derived p-coumaric acid to 4-vinylphenol[J]. Microb Cell Fact,2021,20(1):181. DOI:10.1186/s12934-021-01670-8http://dx.doi.org/10.1186/s12934-021-01670-8.
GUO Y, ALVIGINI L, TRAJKOVIC M, et al. Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound[J]. Nature Communications,2022,13(1):7195. DOI:10.1038/s41467-022-34912-3http://dx.doi.org/10.1038/s41467-022-34912-3.
MARIC I, GUO Y M, FÜRST M J L J, et al. A one-pot, whole-cell biocatalysis approach for vanillin production using lignin oil[J]. Adv Synth Catal,2023,365(22):3987-3995. DOI:10.1002/adsc.202300868http://dx.doi.org/10.1002/adsc.202300868.
SAINSBURY P D, HARDIMAN E M, AHMAD M, et al. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1[J]. Acs Chem Biol,2013,8(10):2151-2156. DOI:10.1021/cb400505ahttp://dx.doi.org/10.1021/cb400505a.
XIN X, ZHANG R-K, LIU S-C, et al. Engineering yeast to convert lignocellulose into vanillin[J]. Chemical Engineering Journal,2024,485:149815. DOI:10.1016/j.cej.2024.149815http://dx.doi.org/10.1016/j.cej.2024.149815.
DU C J, RIOS-SOLIS L, WARD J M, et al. Evaluation of CV2025 ω-transaminase for the bioconversion of lignin breakdown products into value-added chemicals: synthesis of vanillylamine from vanillin[J]. Biocatal Biotransfor,2014,32(5-6):302-313. DOI:10.3109/10242422.2014.976632http://dx.doi.org/10.3109/10242422.2014.976632.
OKAI N, MIYOSHI T, TAKESHIMA Y, et al. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli[J]. Appl Microbiol Biot,2016,100(1):135-145.DOI:10.1007/s00253-015-6976-4http://dx.doi.org/10.1007/s00253-015-6976-4.
WANG X P, LIN L, DONG J D, et al. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing[J]. Appl Environ Microb,2018,84(18):e01469. DOI:10.1128/AEM.01469-18http://dx.doi.org/10.1128/AEM.01469-18.
SALVACHUA D, RYDZAK T, AUWAE R, et al. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin[J]. Microbial Biotechnology,2020,13(3):813. DOI:10.1111/1751-7915.13547http://dx.doi.org/10.1111/1751-7915.13547.
BECKER J, KUHL M, KOHLSTEDT M, et al. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin[J]. Microb Cell Fact, 2018, 17(1):1-14. DOI:10.1186/s12934-018-0963-2http://dx.doi.org/10.1186/s12934-018-0963-2.
ALMQVIST H, VERAS H, LI K N, et al. Muconic Acid Production Using Engineered Pseudomonas putida KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin[J]. Acs Sustain Chem Eng,2021,9(24):8097-8106. DOI:10.1021/acssuschemeng.1c00933http://dx.doi.org/10.1021/acssuschemeng.1c00933.
VARDON D R, FRANDEN M A, JOHNSON C W, et al. Adipic acid production from lignin[J]. Energ Environ Sci,2015,8(2):617-628. DOI:10.1039/c4ee03230fhttp://dx.doi.org/10.1039/c4ee03230f.
JOHNSON C W, BECKHAM G T. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin[J]. Metab Eng,2015,28:240-247. DOI:10.1016/j.ymben.2015.01.005http://dx.doi.org/10.1016/j.ymben.2015.01.005.
SPENCE E M, CALVO-BADO L, MINES P, et al. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin[J]. Microb Cell Fact, 2021,20(1):15. DOI:10.1186/s12934-020-01504-zhttp://dx.doi.org/10.1186/s12934-020-01504-z.
DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. J Integr Plant Biol,2021,63(1):180-209. DOI:10.1111/jipb.13054http://dx.doi.org/10.1111/jipb.13054.
LAN H N, LIU R Y, LIU Z H, et al. Biological valorization of lignin to flavonoids[J]. Biotechnology Advances,2023,64:108107. DOI:10.1016/j.biotechadv.2023.108107http://dx.doi.org/10.1016/j.biotechadv.2023.108107.
ZHU S Y, LIU S C, ZHANG C X, et al. Pathway and enzyme engineering for the bioconversion of lignin derivatives into homoeriodictyol in Saccharomyces cerevisiae[J]. Green Chem, 2024,26(9):5260-5272. DOI:10.1039/D4GC00183Dhttp://dx.doi.org/10.1039/D4GC00183D.
KALLSCHEUER N, VOGT M, MARIENHAGEN J. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism[J]. Acs Synth Biol,2017,6(3):410-415. DOI:10.1021/acssynbio.6b00291http://dx.doi.org/10.1021/acssynbio.6b00291.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构